Radio Control Buggy Gets V10 Power

Amongst the more difficult machining tasks in the world are those involved in the production of internal combustion engines. Thanks to the Internet, it’s now possible to watch detailed videos of master craftsmen assembling tiny desktop V8 and V12 engines in home workshops with barely a CNC in sight. However, up until now, most of these builds have been left on the test stand to bark and wail away. No longer – [Keith] has decided that needs to change.

We’ve seen [Keith]’s work before – particularly, his 125cc V10 build, featuring fuel injection, dual overhead cams, and even a supercharger. With several micro engines under his belt now, it was time to put them to work – the V10 is getting a new home in a 1/3rd scale RC buggy.

We’re not sure [Keith] has heard the phrase “off the shelf” – even the suspension dampers on this build are custom machined. Currently up to part 5, the chassis is coming together and there are plans for a hybrid powertrain, too. Carbon fiber and anodized parts are in abundance – this build is truly a work of art.

We can’t wait to see this V10 monster tearing up the dirt – It’s an ambitious build, but if anyone can pull it off, it’s [Keith]. Video after the break.

Continue reading “Radio Control Buggy Gets V10 Power”

Halo-style Paintball

paintball buggy

It seems as though [Nathan] has taken some serious inspiration from the Warthog. The iconic armored buggy from Halo video games has a turret mounted to the roof. Although [Nathan]’s buggy only shoots paintballs from its turret.

Mounting paintball markers (guns) to various objects such as vehicles, robots, or other machines isn’t quite as straightforward as it seems. Vibrations from anything can transfer through a clamping system and cause paintballs to break. This, of course, inhibits the functionality of the marker and is a messy cleanup to boot. Then there has to be a way to fire the paintballs, which is usually handled by soldering to the electrical connections in the marker. And the entire rig has to stand up to the normal jostling and sudden turns from the buggy.

[Nathan] has solved these problems first by creating a custom fast-change mount that allows any malfunctioning markers to be changed rapidly. The electronic firing mechanism is handled by an ATtiny microcontroller and there is a custom electrical connection that is automatically made when the marker is bolted to the mount.

The new system allows markers to be changed in about 30 seconds, much better than any other system. Maybe in the future [Nathan] can upgrade the buggy’s turret to accommodate a paintball minigun.