Vera Rubin: Shedding Light On Dark Matter

Vera sat hunched in the alcove at Kitt Peak observatory, poring over punch cards. The data was the same as it had been at Lowell, at Palomar, and every other telescope she’d peered through in her feverish race to collect the orbital velocities of stars in Andromeda. Although the data was perfectly clear, the problem it posed was puzzling. If the stars at the edges of spiral galaxy were moving as fast as the ones in the center, but the pull of gravity was weaker, how did they keep from flying off? The only possible answer was that Andromeda contained some kind of unseen matter and this invisible stuff was keeping the galaxy together.

Though the idea seemed radical, it wasn’t an entirely new one. In 1933, Swiss astronomer Fritz Zwicky made an amazing discovery that was bound to bring him fame and fortune. While trying to calculate the total mass of the galaxies that make up the Coma Cluster, he found that the mass calculation based on galaxy speed was about ten times higher than the one based on total light output. With this data as proof, he proposed that much of the universe is made of something undetectable, but undeniably real. He dubbed it Dunkle Materie: Dark Matter.

But Zwicky was known to regularly bad mouth his colleagues and other astronomers in general. As a result, his wild theory was poorly received and subsequently shelved until the 1970s, when astronomer Vera Rubin made the same discovery using a high-powered spectrograph. Her findings seemed to provide solid evidence of the controversial theory Zwicky had offered forty years earlier.

Continue reading “Vera Rubin: Shedding Light On Dark Matter”

LUX Searches In The Deep For Dark Matter

The Homestake Mine started yielding gold in 1876. If you had asked George Hearst, the operator at the time, if the mine would someday yield the secrets of the universe I bet he would have laughed you out of the room. But sure enough, by 1960 a laboratory deep in the mine started doing just that. Many experiments have been conducted there in the five and a half decades since. The Large Underground Xenon (LUX) experiment is one of them, and has been running is what is now called the Sanford Underground Research Facility (SURF) for about four years. LUX’s first round of data was collected in 2013, with the experiment and the rest of the data slated to conclude in 2016. The method, hardware, and results wrapped up in LUX are utterly fascinating.

Continue reading “LUX Searches In The Deep For Dark Matter”