A drone is shown hovering in the sky, with two bright lights shining from its underside.

2025 Component Abuse Challenge: Overdriven LEDs Outshine The Sun

Tagging wildlife is never straightforward in the best of times, but it becomes a great deal more complicated when you’re trying to track flying insects. Instead of trying to use a sensor package, [DeepSOIC] attached tiny, light retroreflectors to bees and hornets, then used a pulsed infrared light mounted on a drone to illuminate them. Two infrared cameras on the drone track the bright dot that indicates the insect, letting the drone follow it. To get a spot bright enough to track in full sunlight, though, [DeepSOIC] had to drive some infrared LEDs well above their rated tolerances.

The LEDs manage to survive because they only fire in 15-µs pulses at 100 Hz, in synchrony with the frame rate of the cameras, rather like some welding cameras. The driver circuit is very simple, just a MOSFET switch driven by an external pulse source, a capacitor to steady the supply voltage, and a current-limiting resistor doing so little limiting that it could probably be removed. LEDs can indeed survive high-current pulses, so this might not really seem like component abuse, but the 5-6 amps used here are well beyond the rated pulse current of 3 amps for the original SFH4715AS LEDs. After proving the concept, [DeepSOIC] switched to 940 nm LEDs, which provide more contrast because the atmosphere absorbs more sunlight around this wavelength. These new LEDs were rated for 5A, so they weren’t being driven so far out of spec, but in tests they did survive current up to 10A.

We’ve seen a similar principle used to drive laser diodes in very high-power pulses a few times before. For an opposite approach to putting every last bit of current through an LED, check out this low-power safety light.

Continue reading “2025 Component Abuse Challenge: Overdriven LEDs Outshine The Sun”

Fun With A Hydrogen Thyratron

There’s something oddly menacing about some vacuum tubes. The glass, the glowing filaments, the strange metal grids and wires suspended within – all those lead to a mysterious sci-fi look and the feeling that strange things are happening in there.

Add in a little high voltage and a tube that makes its own hydrogen, and you’ve got something extra scary. This hydrogen thyratron ended up being just the thing for [Kerry Wong]’s high-voltage, high-current experiments. One would normally turn to the solid-state version of the thyratron, the silicon controlled rectifier (SCR), to switch such voltages. But the devices needed to handle the 30 amps [Kerry] had in mind were exorbitant, and when the IGBTs he used as a substitute proved a little too fragile he turned to the Russian surplus market for help. There he found a TGI1-50/5 hydrogen thyratron, a tube that has a small hydrogen gas generator inside – thyratrons are actually gas-filled rather than vacuum tubes and switch heavy currents through plasma conduction. [Kerry] set up a demo circuit with a small RC network to provide the fast switching pulse preferred by the thyratron, and proceeded to run 3500 volts through a couple of 1/4-W resistors with predictable results. The video below shows the fireworks.

Can’t get enough of the thyratron’s lovely purple glow? We’ve seen it before on this beautiful old switch-mode power supply. The versatile tubes also helped rebuild the first vocal encryption system.

Continue reading “Fun With A Hydrogen Thyratron”

Box ‘o Bangs, A 2,180J Capacitor Bank

What happens when you wire up 16 capacitors? Sixteen 2500V 40uF capacitors to be precise… [Lemming] calls it the Box ‘O Bangs. Theoretically it outputs 4000A at 2500V for a split second.

They bought the capacitors off of eBay, and they appear to be good quality BOSCH ones, straight from Germany. They were apparently used for large-scale industrial photo-flashes, but who knows since they’re from eBay.

Soldering it all together proved to be a challenge, as once they realized just how many amps this thing was going to put out, they needed some thick wire. It looks like about 2ga wire, which, spoiler alert, still isn’t enough for 4000A — but since it’s only for a split second it seems to do fine.

Once everything was built, it was time for some scientific tests — what can we put between the leads to explode? Stay tuned for some slow-motion glory.

Continue reading “Box ‘o Bangs, A 2,180J Capacitor Bank”