Perfect Wall-mounted Tablet Integration

There’s a building downtown built about ten years ago that has tablet-sized LCD screens next to the entrance of each large meeting room. They’re never on and we always wonder why they didn’t just use one of those things that holds a sheet of printer paper to label what’s happening in the meeting space? Now this is a similar idea but with much better execution. Instead of just displaying data the in-wall tablet mount makes your room interactive.

[Tim’s] been working on it for a couple of years. He started out trying to house an iPod Touch behind a junction box cover plate. There are some pictures of that at the top of his build album. That didn’t quite take so keep scrolling to see the path to the finished product shown above. He cut a hole in the drywall and figured out how to mount a tablet dock that includes inductive charging. It holds the tablet in place with the small ledge and a few magnets, keeping its battery charged without a need for wires. Once tested he mudded, sanded, textured, and painted for a perfect finished product.

TP-Link Router Turned Into A DALI Automated Lighting Controller

dali-control-in-tplink-router

The members of Shackspace continue to put up impressive hacks based around the tiny TP-Link routers. This time around [Timm] has shoehorned a DALI controller inside the router case. This is a protocol we don’t remember hearing about before. The Digital Addressable Lighting Interface is a control network for commercial lighting. That way people responsible for taking care of large buildings can shut off all the lights at night (to name just one use). The new room at Shackspace has this style of controllers in its lights.

The two brown wires coming into the router make up the data bus for the DALI system. It connects to the add-on PCB which uses an Atmel AT90PWM316 microcontroller. The chip is specifically designed for DALI networks which made the rest of the project quite easy. It talks to the lights, the router talks to it, bob’s your uncle, and you’ve got network controlled lighting. Get this in a big enough building and you can play some Tetris.

In case you were wondering. Yes, this project has already been added to their TP-Link firmware generator.

Raspberry Pi Helps With 2.4GHz Home Automation

Wanting to extend the capabilities of the radio frequency devices in his home [Kalle Löfgren] turned a Raspberry Pi into an RF control hub. We’ve seen some of his home automation work in the past. In his media room he built a universal remote base station which used the same RF board as in this project. The main difference is that before he went with an AVR microcontroller and this time he’s upgrade to a Raspberry Pi board.

The RPi brings a lot more to the table. Notably, the scripting (whose output is shown above) and networking features. His radio board is an nRF24L01 which he talks to via the SPI protocol. The Raspberry Pi has no problem talking to SPI devices through its GPIO header. [Kalle] just needed to do a bit of setup to configure the pin modes.

A Python script lets him sent commands using his keyboard, but this can also be automated. Combine that with the TCP server script he wrote and it opens up the a wide range of configurations to switch or talk to any device operating on the 2.4 GHz band.

Just Put Your Lips Together To Turn On A Lamp

whistler-lamp-control

The inlaid image is a controller board which [Limpkin] developed to add whistle control as a home automation option. It has an effective range of around fifteen feet and does a good job of detecting whistles from many different people. Here is one of the test subjects (captured with a hidden camera) whistling to the white LED lamp in order to switch it on.

The board is quite small. [Limpkin] holds it up in the beginning of his test video, which gives a good sense of scale. One end has a barrel jack through which the board gets power. The other end has a two conductor screw terminal which is used for switch your devices. An N-channel MOSFET protects the circuit when a heavy external load is connected. It is capable of driving a respectable 90 watts. If you’re looking to switch mains rated devices you’ll need to bring your own relay to the party.

Audio processing is handled by the Freescale ARM Cortex M4 chip at the center of the board. The Serial Wire Debug (SWD) clock and data pins are both broken out to solder pads so the thing is hackable. [Limpkin] posted the schematic, gerbers, and a code template. But he didn’t release the algorithms he uses for processing so if you want to make this at home you’ll need to figure that out for yourself. If you need help you should check out this whistle-based remote control.

http://www.youtube.com/watch?v=1eIxAMKNphw

Pebble Watch Hack Makes It A Home Automation Controller

[Enrico] loves his Pebble watch, and recently had a chance to explore the code package used to customize its function. It turned out to be really easy to work with so he set out to make the Pebble watch into a home automation controller (dead link; Internet Archive).

So far the two bits of hardware used in his experiments are shown in the image above. The watch itself serves as the controller, interacting with the Ethernet relay board seen in the background. The watch communicates via Bluetooth but you don’t have to know much about that thanks to the example files available from the repository. With communications taken care of he needed a menu system to access commands on the watch. Instead of coding his own he hacked a playlist into the built-in music menu. This allows him to switch the relays on and off again as if he were playing or pausing audio tracks. See it in action after the break.

Continue reading “Pebble Watch Hack Makes It A Home Automation Controller”

Hidden Servo Automates Slat-style Window Blinds

slat-blind-automation

[Home Awesomation] has been working on automating his slat-style window blinds. His focus has been on adjusting the angle of the slats, not on completely retracting the shades. Since the slat angle adjustment requires little torque a servo motor turns out to be just perfect for the job. The good news is that the existing blinds in his house have room in the top enclosure to completely hide his add-on hardware.

The image above is a screenshot from the demo which you can watch after the break. The top enclosure for the blinds is just shown at the top of the frame. Here [HA] is demonstrating a few different control designs which he has been trying out. You can see what looks like a Molex connector with some type of component attached to it. That’s an IR motion sensor and he’s really happy with its performance. He feels the same way about the black momentary push switch sticking down next to the power cable. But his DIY solution that works quite well is the pull string attached to a flexible piece of metal. When that metal bends enough to touch a stationary conductor it completes the circuit, telling the Arduino to start driving the servo.

The main idea behind the project is to poll a temperature sensor, closing the blind automatically to help keep the place cool during the day. We figure if he’s already using a microcontroller to drive the project he might as well throw a cheap Bluetooth in module there and make it controllable with a smart phone.

Continue reading “Hidden Servo Automates Slat-style Window Blinds”

Home Security Hardware Makes You The Monitoring Service

diy-home-security

[Nick] and [Simon] both have home security systems with a monitoring service who will call whenever an alarm is tripped. For [Simon] this ends up happening a lot and he wanted to change the circumstances that would trigger a call. Because of company policy the service is inflexible, so he and [Nick] went to work cutting them out of the loop. What they came up with is this custom electronics board which monitors the security system and calls or texts them accordingly.

They started with the self-monitoring alarm system design we looked at back in September. This led to the inclusion of the SIM900 GSM modem, which is a really cheap way to get your device connected to the cellular network. It also uses a DTMF touch tone decoder to emulate the phone line to keep the security system happy. [Simon] highlights several changes he made to the design, as well as the reasons for them. One idea he has for a possible revision is to do away with the MT8870 chip which handles the touch tones. He thinks it may be possible to use the SIM900’s DTMF features to do that work instead.