Building A 3270 Terminal Controller

We like to talk about how most of our computers today would have been mainframes a scant 40 or 50 years ago. Because of that, many people who want to run IBM mainframes such as the IBM 360 or 370 use the Hercules emulator to run the big iron on their PCs. However, mainframe IBM computers used an odd style of terminal and emulating it on a PC isn’t always as satisfying. At least, that’s what [lowobservable] thought, so he decided to get a 3270 terminal working with Hercules.

Back in the bad old days of computing, there were two main styles of terminals. Some companies, for example DEC, essentially used terminals as a “glass teletype.” That is, the screen was an analog of a roll of paper — more or less — and the keyboard immediately sent things to the remote system. However, companies like IBM and HP favored a different approach. Their terminals dealt with screens full of data. The terminal was smart enough to let you fill in forms, edit text on the screen, and then you’d send the entire screen in one gulp. Both systems had pros and cons, but — as you might expect — the screen-oriented terminals were more complex.

Continue reading “Building A 3270 Terminal Controller”

COBOL Isn’t The Issue: A Misinterpreted Crisis

Is history doomed to repeat itself? Or rather, is there really any doubt that it isn’t, considering recent events that made the news? I am of course talking about New Jersey’s call for COBOL programmers to fix their ancient unemployment system, collapsing under the application spikes caused by the COVID-19 lockdown. Soon after, other states joined in, and it becomes painfully apparent that we have learned absolutely nothing from Y2K: we still rely on the same old antiques running our infrastructure, and we still think people want to voluntarily write COBOL.

Or maybe they do? Following the calls for aid, things went strangely intense. IBM announced to offer free COBOL trainings and launched a forum where programmers can plug their skills and availability. The Open Mainframe Project’s COBOL programming course suddenly tops the list of trending GitHub projects, and Google Trends shows a massive peak for COBOL as well. COBOL is seemingly on its way to be one of the hottest languages of 2020, and it feels like it’s only a matter of time until we see some MicroCOBOL running on a Teensy.

However, the unemployment systems in question are unfortunately only a tiny selection of systems relying on decades old software, written in a language that went out of fashion a long time ago, which makes it difficult to find programmers in today’s times. Why is that?

Continue reading “COBOL Isn’t The Issue: A Misinterpreted Crisis”

Big Beautiful Vintage Computers, And Where To Find Them

An IBM 3380E disk storage system, 5 gigabyte capacity.

[Ken Shirriff] recently shared some pictures and a writeup from his visit to the Large Scale Systems Museum, a remarkable private collection of mainframes and other computers from the 1970s to the 1990s. Housed in a town outside Pittsburgh, it contains a huge variety of specimens including IBM mainframes and desk-sized minicomputers, enormous disk and tape storage systems, and multiple 90s-era Cray supercomputers. It doesn’t stop there, either. Everything through the minicomputer revolution leading to personal home computers is present, and there are even several Heathkit HERO robot kits from the 80s. (By the way, we once saw a HERO retrofitted with wireless and the ability to run Python.)

Something really special is that many of the vintage systems are in working order, providing insight into how these units performed and acted. The museum is a private collection and is open only by appointment but they encourage interested parties not to be shy. If a trip to the museum isn’t for you, [Ken] has some additional photos from his visit here for you to check out.

Teaching A Vintage Line Printer To Make Music, All Over Again

Sit next to any piece of machinery long enough and you get to know it by the sounds it makes. Think about the sounds coming from any 3D-printer or CNC machine; it’s easy to know without looking when the G code is working through the sines and cosines needed to trace out a circle, for instance.

It was the same back in the day, when bored and bright software engineers heard note-like sounds coming from their gear and wrote programs to turn them into crude music machines. And now, [Ken Shirriff] details his efforts to revive a vintage IBM 1403 line printer’s musical abilities. The massive 1960s-era beast is an irreplaceable museum piece now, but when [Ken] and his friends at the Computer History Museum unearthed stacks of punch cards labeled with song titles like “Blowin’ In the Wind” and “The Blue Danube Waltz,” they decided to give it a go.

The 1403 line printer has a unique chain-drive print head, the inner workings of which [Ken] details aptly in his post. Notes are played by figuring out which character sequences are needed to get a particular frequency given the fixed and precisely controlled speed of the rotating chain. The technique is quite similar to that used by musical instruments such as the Floppotron, or when coercing music from everyday items including electric toothbrushes.

Lacking the source code for the music program, [Ken] had to reverse engineer the compiled program to understand how it works and to see if playing music would damage the chain drive. The video below shows the printer safely going through a little [Debussy]; audio clips of songs originally recorded back in 1970 are available too.

Continue reading “Teaching A Vintage Line Printer To Make Music, All Over Again”

The Case Of The Vintage Computer, The Blown Fuse, And The Diode

If you are the operator of a vintage computer, probably the only one of its type remaining in service, probably the worst thing you can hear is a loud pop followed by your machine abruptly powering down. That’s what happened to the Elliott 803B in the UK’s National Museum Of Computing, and its maintainer [Peter Onion] has written an account of his getting it back online.

The Elliott is a large machine from the early 1960s, and because mains supplies in those days could be unreliable it has a rudimentary UPS to keep it going during a brownout. A hefty Ni-Cd battery is permanently hooked up to a charger that also serves as the power supply for the machine, ensuring that it can continue to operate for a short while as the voltage drops. A spate of fuses had blown in this power supply, so we’re taken through the process of fault-finding. Eventually the failure is found in a rectifier diode, the closest modern equivalent is substituted, and after testing the machine comes back to life.

We’re used to reading these stories from the other side of the Atlantic, so we welcome TNMOC saying that this is the first of a series of technical posts on their work. We visited the museum back in 2016, and also featured its famous recreated Colossus.

So, You Want To Buy A Mainframe

The computers we are used to working with are more likely to be at the smaller end of the computational spectrum. Sometimes they are very small indeed, such as tiny microcontrollers with only a few GPIOs. Others are single board machines such as a Raspberry Pi or an Arduino, and often a desktop or laptop PC. Of course, while these can be very capable machines, they don’t cut the mustard in the upper echelons of corporate computing. There the mainframe still rules, sitting in air-conditioned machine rooms and providing some of the glue that cements our economy together.

Most of us will never own a mainframe, even if sometimes we marvel at people who rescue ancient ones for museums. But it’s not impossible to run one yourself even if it isn’t cheap, and  [Christian Svensson] has written a guide for the potential purchaser of a more recent IBM model.

This is a fascinating piece as an uninformed spectator because it reveals something about the marketing of these machines. A fridge-sized rack may contain much more hardware than expected because all machines ship with high specifications installed but not enabled by licensing software. In some IBM machines this software comes on an attached laptop which goes missing when the mainframe is decommissioned, we’re told without this essential component the machine is junk. The practicalities are also considered, such things as whether the appropriate interface modules are present, or how to assess how much RAM has been installed. Powering the beast is less of a problem than you might expect as they ship with PSUs able to take a wide variety of DC or AC sources.

Once upon a time the chance to own one of the earlier DEC VAX minicomputers came the way of your scribe, the passing up on which has ever since been the source of alternate regret and thankfulness at a lucky escape. The ownership of second-hand Big Iron is not for everyone, but it’s nevertheless interesting to learn about it from those who have taken the plunge. There’s a tale unfolding about the ownership of a much older IBM room-sized computer at the moment.

IBM mainframes header image: Agiorgio [CC BY-SA 4.0]

A Mainframe Tape Drive Emulator

Retro computer fans come in all shapes and sizes. Some like the big name machines from the dawn of the home computer era, others like collecting quirky pieces like early laptops and handheld devices. Even more obscure are those who choose to collect old mainframe hardware. This can be challenging, due to its relative obscurity and the limited resources available. [skaarj] is just one such fanatic, however, and has begun creating a PERTEC tape drive emulator for his Cold War era mainframe.

For those of us who didn’t work in industrial computing back in the 1980s, the PERTEC interface is an unfamiliar beast. It became somewhat of a defacto standard for connecting tape drives to mainframes. [skaarj] aims to understand and emulate this interface, creating a device with a full suite of capabilities. The PERTEC Whisperer is intended to be capable of reading and writing from PERTEC tape drives, including dumping tapes to an integrated SD card. The device will also be able to emulate a drive when connected to a mainframe.

Thus far, the adventure has already netted some successes. [skaarj] learned useful tricks, like rewinding a 9-track Qualstar 1260 with VHS tape, and how to pull apart the protocols involved using an old-school HP1662 logic analyzer. We can’t wait to see where the project goes next, and it might just have us hunting for a mainframe to call our very own.