Circuits board from a PDP-11 minicomputer with inset terminal display

PDP-11/34 Restoration And The Virtue Of Persistence

The wildly successful PDP-11 minicomputer was a major influence on the evolution of computing throughout the 1970s. While fondly remembered in modern day emulation, there’s nothing like booting up the real thing, as [Jerry Walker] explores in his video series on restoring a PDP-11/34. Examples of PDP-11 hardware are becoming increasingly rare, which makes restoration and preservation of remaining equipment even more critical. [Jerry] has gone to exhaustive lengths to restore his PDP-11/34 to working condition, painstakingly troubleshooting wire-wrapped backplane and replacing suspect ICs across the entire system. With scant documentation on some of the cards, it was often a matter of sheer will and technical know-how that saw the system eventually come back to life.

If you’ve got a couple of hours, make sure to check out the entire series of videos documentation the restoration over on YouTube. If you’ve ever thought about restoring vintage computers, this series offers an insight into the satisfying yet oh-so-tedious process of chasing down broken traces and faulty logic. Exorcising the demons from decades-old computers is almost never straightforward, but [Jerry] demonstrates that persistence can yield exciting results. After the break is the latest installment of this series, which shows the system booting into the RT-11 operating system from floppy disk.

If you don’t have the time or real estate to restore a real PDP-11, you might want to check out modern hassle-free replicas. Or, if we’ve piqued your interest in restoring minicomputers, don’t miss what we had to say about previous PDP-11 resurrections, like this PDP-11/04.

Continue reading “PDP-11/34 Restoration And The Virtue Of Persistence”

A vintage computer terminal next to a bank of computer cards

Minicomputer Restoration Hanging In The Balance

[David Lovett] aka Usagi Electric has spent the last several months dissecting a Centurion minicomputer from 1980. His latest update reveals that the restoration has hit several snags, and bootstrapping this old blue beast is going to be a challenge.

When we last checked in on this project, [David] had built a homebrew ROM reader to backup critical data stored several of the minicomputer’s ROM chips. Since then, the good news is that the Centurion is showing signs of life. Probing the Data Set Ready pin on the default RS232 serial port reveals a stream of data, likely stemming from the ‘CPU6’ board.

Unfortunately, that’s where the good news ends. Adding a terminal to the serial port interrupts this stream of data, and no information appears to be sent or received from any of the three terminals tested. To make matters worse, both of the massive hard drives appeared to have suffered catastrophic head crashes at some point in the 1990s, destroying the Centurion operating system and likely other important data in the process. Soiled air filters were the likely culprits, with evidence showing that yearly maintenance had been overlooked. While at least one of the drives can be repaired with new platters, the original operating system is completely lost.

As luck would have it, a previous employee of Centurion was able to provide a wealth of undocumented information that greatly aided in making sense of the minicomputer’s individual components. Incredibly, they were also able to provide a PROM Diagnostic board for the Centurion system. Not only could this board run a barrage of tests, it could also bootstrap the system with TOS (Test Operating System), a bare-bones memory monitor stored on the card’s PROMs. While the diagnostic card itself needs repairs, there’s now the slightest chance that [David] can use TOS as the starting off point for writing new software for the Centurion.

We really can’t wait to see what happens next with this project. We’ve covered some very special vintage computer restorations in the past, such as the cursed Diablo drive from a rare Xerox Alto, not to mention the delicate power-up procedure for an original Apple 1.

Continue reading “Minicomputer Restoration Hanging In The Balance”

Homebrew ROM Reader Saves Data From A Vintage Minicomputer

Have you ever heard of a Centurion minicomputer? If not, don’t feel bad — we hadn’t either, until [David Lovett] stumbled upon a semi-complete version of the 1980-ish mini in all its wood-trimmed, dust-encased glory. And what does a hacker do with such an acquisition but attempt to get it going again?

Of course, getting a machine from the Reagan administration running is not without its risks, including the chance of losing whatever is on the machine’s many ROM chips forever. When finding a commercial ROM reader supporting the various chips proved difficult, [David] decided to build his own. The work was eased considerably by the fact that he had managed to read one chip in a commercial reader, giving him a baseline to compare his circuit against. The hardware is straightforward — a 12-bit counter built from a trio of cascaded 74LS161s to step through addresses, plus an Arduino Nano to provide clock pulses and to read the data out to the serial port.

The circuit gave the same results as the known good read, meaning results would be valid for the rest of the chips. The breadboard setup made supporting multiple ROM pinouts easy, even for the chips that take -9 volts. What exactly the data on the ROMs mean, if anything, remains a mystery, but at least it’s backed up now.

Before anyone notes the obvious, yes, [David] could have used a 555 to clock the reader — perhaps even this one. We’d actually have loved that, but we get it — sometimes you just need to throw an Arduino at a job and be done with it.

Continue reading “Homebrew ROM Reader Saves Data From A Vintage Minicomputer”

Big Beautiful Vintage Computers, And Where To Find Them

An IBM 3380E disk storage system, 5 gigabyte capacity.

[Ken Shirriff] recently shared some pictures and a writeup from his visit to the Large Scale Systems Museum, a remarkable private collection of mainframes and other computers from the 1970s to the 1990s. Housed in a town outside Pittsburgh, it contains a huge variety of specimens including IBM mainframes and desk-sized minicomputers, enormous disk and tape storage systems, and multiple 90s-era Cray supercomputers. It doesn’t stop there, either. Everything through the minicomputer revolution leading to personal home computers is present, and there are even several Heathkit HERO robot kits from the 80s. (By the way, we once saw a HERO retrofitted with wireless and the ability to run Python.)

Something really special is that many of the vintage systems are in working order, providing insight into how these units performed and acted. The museum is a private collection and is open only by appointment but they encourage interested parties not to be shy. If a trip to the museum isn’t for you, [Ken] has some additional photos from his visit here for you to check out.

A PDP-11 On A Chip

If you entered the world of professional computing sometime in the 1960s or 1970s there is a high probability that you would have found yourself working on a minicomputer. These were a class of computer smaller than the colossal mainframes of the day, with a price tag that put them within the range of medium-sized companies and institutions rather than large corporations or government-funded entities. Physically they were not small machines, but compared to the mainframes they did not require a special building to house them, or a high-power electrical supply.

A PDP-11 at The National Museum Of Computing, Bletchley, UK.
A PDP-11 at The National Museum Of Computing, Bletchley, UK.

One of the most prominent among the suppliers of minicomputers was Digital Equipment Corporation, otherwise known as DEC. Their PDP line of machines dominated the market, and can be found in the ancestry of many of the things we take for granted today. The first UNIX development in 1969 for instance was performed on a DEC PDP-7.

DEC’s flagship product line of the 1970s was the 16-bit PDP-11 series, launched in 1970 and continuing in production until sometime in the late 1990s. Huge numbers of these machines were sold, and it is likely that nearly all adults reading this have at some time or other encountered one at work even if we are unaware that the supermarket till receipt, invoice, or doctor’s appointment slip in our hand was processed on it.

During that over-20-year lifespan of course DEC did not retain the 74 logic based architecture of the earliest model. Successive PDP-11 generations featured ever greater integration of their processor, culminating by the 1980s in the J-11, a CMOS microprocessor implementation of a PDP-11/70. This took the form of two integrated circuits mounted on a large 60-pin DIP ceramic wafer. It was one of these devices that came the way of [bhilpert], and instead of retaining it as a curio he decided to see if he could make it work.

The PDP-11 processors had a useful feature: a debugging console built into their hardware. This means that it should be a relatively simple task to bring up a PDP-11 processor like the J-11 without providing the rest of the PDP-11 to support it, and it was this task that he set about performing. Providing a 6402 UART at the address expected of the console with a bit of 74 glue logic, a bit more 74 for an address latch, and a couple of  6264 8K by 8 RAM chips gave him a very simple but functional PDP-11 on a breadboard. He found it would run with a clock speed as high as 11MHz, but baulked at a 14MHz crystal. He suggests that the breadboard layout may be responsible for this. Hand-keying a couple of test programs, he was able to demonstrate it working.

We’ve seen a lot of the PDP-11 on these pages over the years. Of note are a restoration of a PDP-11/04, this faithful reproduction of a PDP-11 panel emulated with the help of a Raspberry Pi, and an entire PDP-11 emulated on an AVR microcontroller. We have indeed come a long way.

Thanks [BigEd] for the tip.

Restoring A PDP-10 Console Panel

The PDP-10 was one of the first computers [Jörg] had gotten his hands on, and there are very, very few people that can deny the beauty of a panel full of buttons, LEDs, dials, and analog meters. When one of the front panels for a PDP-10 showed up on eBay, [Jörg] couldn’t resist; a purchase that would lead him towards repairing this classic console and making it functional again with a BeagleBone.

The console [Jörg] picked up is old enough to have voted for more than one Bush administration, and over the years a lot of grime has covered the beautiful acrylic panels. After washing the panel in a bathtub, [Jörg] found the dried panel actually looked worse, like an old, damaged oil painting. This was fixed by carefully scraping off the clear coat over two weeks; an important lesson in preserving these old machines. They’re literally falling apart, even the ones in museums.

With the front panel cleaned, [Jörg] turned his attention to the guts of this panel. The panel was wired up for LEDs, and each of the tiny flashlight bulbs in the pushbuttons were replaced. The panel was then connected to a BlinkenBone with a ton of wiring, and the SIMH simulator installed. That turns this console into a complete, working PDP-10, without sucking down kilowatts of power and heating up the room

This isn’t the first time we’ve seen [Jörg] with a BeagleBone and some old DEC equipment; earlier he connected the front panel of a PDP-11 variant to one of these adapters running the same software.

NYC Resistor Gets A PDP-11/34

PDP-11/34 NYCR

[Trammel Hudson] and NYC Resistor have gotten their hands on some old computing iron in the form of a PDP-11/34.  The PDP-11 is a 16 bit minicomputer made by Digital Equipment Corporation (DEC). Various incarnations of the PDP-11 were sold from the 1970’s all the way into the 1990’s. NYC Resistor’s model is has a label dating it to 1983.

The PDP was found in an old storage unit in the Bronx. Moving several racks of equipment across the city is no small feat, but NYC Resistor members have it done it so many times they’ve got it down to a science.

Once power is applied, a stock PDP won’t actually do anything until the boot loader is keyed in from the CPU front panel. Thankfully this particular PDP-11 had its boot instructions printed on a label on the CPU. NYCR’s machine also includes an M9312 “bootstrap / Unibus terminator” board, which allows the machine to boot at the push of a button.

The team connected the racks, terminals, and drives. Carefully following the instructions, they actually got their PDP to boot up! Their next step is to start reading in some of the old tapes that came with the machine. We’re all waiting with bated breath to see what “digitized monkey brains” contains. Once the machine is fully functional, we hope they get it on the internet and load up The Hackaday Retro Edition.

Continue reading “NYC Resistor Gets A PDP-11/34”