Robots Listen Only To The Leader When Building A Roving Quadcopter Landing Pad

Swarm robotics is really starting to produce some interesting results. This image is from the video embedded after the break that show a group of five robots creating a landing platform for a quadrotor helicopter. The four that actually make up the platform are not in contact with each other, but instead following commands from the leader. We’re impressed by the helicopter’s ability to target and land on the moving platform. Takeoff appears to be another issue, as the platform bots stop moving until the quadcopter is airborne again.

These robots are part of a Graduate project at Georgia Tech. [Ted Macdonald] has been working along with others to implement an organizational algorithm that guides the swarm. The method requires that the robots have an overview of the location of all others in the swarm. This is done with high-speed cameras like we’ve seen in other robotic control projects. But that doesn’t discourage us. If you already have a flying robot as part of the swarm, you might as well add a few more to serve as the eyes in the sky.

Continue reading “Robots Listen Only To The Leader When Building A Roving Quadcopter Landing Pad”

One Really Big Quadcopter That Is Following In The Steps Of The Spruce Goose

Behold the Land-Bear-Shark, a quadcopter on a rather grand scale. At a full eight kilograms it’s an easy target to compare the [Howard Hughes] behemoth, but in addition to the weight, this still has yet to make its first flight.

To give you some scale to the image above, the board at the center is an Arduino. It controls the beast, along with the help of a SparkFun IMU board which rides atop. Really, if any quadcopter of this size has a chance of working, this should be the one. The construction is beautiful, making use of carbon fiber rod along with 3D-printed connectors to assemble the frame. A lot of thought has gone into small things like conserving weight used on the landing gear, which are incorporated into the bottom corner brackets. The batteries are connected in a manner that makes them easy to adjust, acting as ballast for balancing the craft.

We’re keeping our fingers crossed that this will be more than the tongue-in-cheek title of the post which calls it a Quadrotor-shaped sculpture.

[via Adafruit]

Kinect-controlled Quadrotor

kinect_quadrotor_control

The team over at the Flying Machine Arena has been busy combining two of our favorite toys – quadrotors and Kinect.

Like many other hacks, they are using Kinect to monitor their joint positions, mapping a handful of actions to the operator’s movements. Once the quadrotor is aloft, it can be directed around the room using the operator’s right hand. The gesture recognition system responds almost instantly, guiding the vehicle in all directions with ease. When the user’s left hand is raised, the quadrotor does a mid-air flip and awaits its next command, while a quick clap of the hands brings the machine to rest on the ground.

For the protection of anyone testing out the system, overhead motion tracking cameras are used to keep track of the Kinect’s position, creating an invisible midair barrier through which the quadrotor is not allowed to pass.

If you have a minute, check out the video below – controlling quadrotors looks way more fun than any Kinect game we’ve come across.

Continue reading “Kinect-controlled Quadrotor”

Robotic Schadenfreude – Quadrotor Blooper Reel

quadrotor_fail

While quadrotors might just become the killing machines of choice some time in the future, we’re pretty sure it will be awhile before they run amok and wipe humans off the face of the planet, if the following video is any indication.

The team over at UPenn’s GRASP Lab film everything they do when it comes to quadrotors for posterity’s sake. When your awesome job consists of directing quadrotors through all sorts of acrobatic hijinks however, mistakes are going to happen. Thankfully, the team doesn’t keep these a secret, and while we’re typically wowed by what these flying machines can do, it’s also pretty fun to see them fail in such spectacular fashion.

If you have a spare minute, kick back, fire up the video, and enjoy the mechanical mayhem that ensues. We certainly sleep better at night knowing that while these things are awesome, a well-placed hula hoop is all it takes to ensure continued human supremacy.

Continue reading “Robotic Schadenfreude – Quadrotor Blooper Reel”

Quadcopter Pair Plays Table Tennis Without The Table

This pair of quad-rotor helicopters does a better job of keeping a ping-pong ball in the air than we could. The two flying drones are performing inside of the flying machine arena, a 1000 cubic meter indoor space surrounded by nets with a foam-padded floor. This makes for a prototype-friendly space, protecting the copters from hard landings and the experimenters from the maiming that might accompany a runaway robot.

This project is headed by researcher [Raffaello D’Andrea]. Previously, we’ve seen his work on a distributed flight array. This time around he’s not working with configurable modules, but completely separate units. Don’t miss the video after the break to see several iterations used to keep a ball in the air. Each bot has the head of a tennis racket mounted at its center. Throw a ball at them and they’ll to what they can to prevent it touching the ground.

While we’re on the topic, we caught a story on NPR about hobby drones. Sounds like their growing popularity has caught the attention of the non-hacker community and restrictions might be on the way. So what are you waiting for? Get out there and make your own flyer while it’s still the wild-west of personal drones.

Continue reading “Quadcopter Pair Plays Table Tennis Without The Table”

Easy Quadrotor Helicopter Instructions

Here’s a great tutorial on building your own quadrotor helicopter. This build isn’t necessarily less expensive than others we’ve seen since quality motors, propellers, and control circuitry aren’t cheap. But the design and assembly is well documented and presents a well-planned building procedure. The carbon-fiber tubes that make up the frame have extensions to protect the motors and propellers in the event of a crash. The Arduino, IMU, and transceiver are all tucked away between two aluminum body plates as well. They only thing missing is a solid methodology for tuning the four motors, a critical procedure that is just touched up at the end of the article.