Reverse Engineering An RGB LED Remote

In the quest to add some mood lighting in his basement, [Mohonri] found an infrared wireless remote that is able to control several RGB LED strips. The only problem with this remote is the inability to control it via a wall-mount panel or even a computer. Obviously this would not stand for such a swank basement, so [Mohonri] did the reasonable thing and reverse engineered one of these remotes.

The build started with ripping the remote apart and figuring out how it ticks. [Mohonri] found the small IR LED transmitter and hooked up an oscilloscope to capture some data. After a bunch of trial and error and a big help from relevant documentation he had the entire button matrix – and thus the functions available to the LED strip – available to output via wall panel or computer.

[Mohonri] hasn’t completed his build yet; this was just the reverse engineering and documentation stage. Now, though, it shouldn’t be hard to control the RGB LED strips through an Arduino, a computer, or even an Android/iOS device with a small IR LED plugged into the headphone jack.

Building LED Walls On The Cheap

Around this time last year, [KopfKopfKopfAffe] was enlisted as a set designer and was told to build some sort of light effects for electronic music parties. The budget for the project wasn’t much at 200 Euros, but he did manage to build decent 5×5 RGB LED matrix that is fully controllable by a computer.

[KopfKopfKopfAffe] didn’t have the time or money to wait for manufactured PCBs, so a bunch of perfboard was placed in a CNC mill with a pen to act as a plotter. All the lines that needed soldered were drawn on by the mill, a feat that probably saved hours of looking at the design before committing solder to iron.

A total of five boards were constructed, each one capable of controlling five RGB LEDs. Each board can be dasiy-chained with an RS-232 serial connection for further expansion. The only thing that’s needed to control the matrix is 17 bits that includes an address and RGB color data for each LED. The system only cost about 10 Euros per node, but we think that could be significantly reduced by leaving out the Molex and DB-9 connectors. [Kopf] project turned out very nice, check it out after the break.

Continue reading “Building LED Walls On The Cheap”

Controlling A Cute Ikea Night Light With Android On The Cheap

When [trandi]’s wife saw a cute night light at Ikea, she had to have it. She actually bought several of these for when her husband would inevitably crack one open and start tinkering with the microcontroller inside. The inevitable hack is pretty cool, and also gives us some ideas for interfacing with Android on the cheap.

The build started as an Ikea Spoka night light, an adorable anthropomorphized night light with a squishy silicone skin. Inside the Spoka are a dozen tri-color LEDs that [trandi] can cycle through with the push of a button. After deciding to control the lights inside the Spoka with an Android phone he reached for an IOIO Android breakout board. Fate intervened and [trandi] ended up with a ridiculously cheap Bluetooth modules that provides a simple serial connection to other Bluetooth devices.

The build reuses the blue, red, orange LEDs in the night light but replaces the no-name 8-pin micro with an ATtiny2313. [Trandi] wrote a small Android app to control the color over a Bluetooth serial connection. Check out his demo after the break.

Continue reading “Controlling A Cute Ikea Night Light With Android On The Cheap”

Rainbow Machine Livens Up Any Photograph

rainbow-machine

[Shameel Arafin, Sean McIntyre, and Reid Bingham] really dig rainbows. Going by the moniker the “RainBroz”, the trio built a portable display that can be used to add cool light painting effects to pictures.

The group brings their Rainbow Machine all over the place, including parties, gatherings, and random spots on the street. Anyone is welcome to have their picture taken with the Rainbow machine, and each subject is given a card with a URL on it, so that they can check out their picture whenever they please.

The display consists of addressable RGB LED strips and an Arduino from Adafruit, along with the associated support mechanisms for moving the LEDs. The real magic is carried out by the LPD8806 light painting library, also from Adafruit, which enables the RainBroz to create all sorts of images with little fuss.

As you can see in the video below, the Rainbow Machine seems to get a pretty warm reception from just about everyone, even people grabbed right off the street. It looks simple enough to build, so why not put one together for your next gathering?

Continue reading “Rainbow Machine Livens Up Any Photograph”

LED Cube Is A Little Bit Of Kit, A Lot Of Point-to-point Soldering

[Craig Lindley] recently finished building his own RGB LED cube project. It’s made up of four layers of 4×4 LED grids, but you may notice that the framework that supports the structure is not the usual ratsnet of wires we’ve come to expect. They’re actually long, thin circuit boards. [Craig] grabbed the Rainbow Cube kit sold by Seeed Studio for this project. But instead of pairing it with their Rainbowduino driver, he built his own to give him more options on how to control the blinky lights.

He’s using an Arduino Uno to control the display, choosing TLC5940 driver chips to safely provide the juice necessary to light up the grid. These drivers also offer 12-bit pulse-width modulation for easy color mixing. Driving the LEDs directly would have taken a large number of these expensive chips (over $4 a piece), but if multiplexed the design only calls for two of them.

Check out a video of the finished cube reacting to music thanks to the microphone and amplifier circuit [Craig] build into the driver board.

Continue reading “LED Cube Is A Little Bit Of Kit, A Lot Of Point-to-point Soldering”

StripInvaders Puts Colored Lights Everywhere

There’s not much to be gained by living in a discotheque but colored lights are awesome, especially when they’re as well implemented as [michu]’s StripInvaders.

The StripInvaders project takes a gigantic 5 meter LED strip with WS2801 controllers and turns it into an Ethernet-enabled 24 bit display with the new Arduino Ethernet. While the Ethernet-enabled may seem a little superflous, [michu] implements it quite nicely. The entire 5 meter LED strip can be controlled from a tablet or smartphone.

Apart from a tablet/smartphone interface with OSC, there’s also mDNS support so we’re sure the StripInvaders could make for an interesting LAN party with the appropriate scripts. While the cost of the LED strip itself is fairly high, we’re sure some Hack a Day commenter will come up with a cheaper solution.

The firmware for StripInvaders has been posted on Github, but for a real treat, check out the demo after the break.

Continue reading “StripInvaders Puts Colored Lights Everywhere”

Minimalist DIODER Hack Requires No External Microcontroller

pic_dioder_hack

Hackaday reader [chrysn] picked up a 3-button RGB model DIODER light from IKEA and thought he might as well take it apart to see what he could do with it. Having seen several DIODER hacks featured here, he knew it was easily hackable, but he didn’t want to simply rehash what other had already done.

All of the DIODER hacks we have come across thus far incorporate some sort of AVR chip or add-on board to expand its capabilities. [chrysn] saw that the controller already had a PIC16F684 inside, and thought that installing his own firmware onto the existing hardware would be a far more simple solution. He installed a small programming cable onto the DIODER’s control board, and using his PICkit2 programmer, flashed the chip with a custom firmware image.

His modifications worked great, and [chrysn] says that there is plenty potential in the existing hardware to have all sorts of fun with it. Even so, he notes that there are several AVR-flavored drop-in replacements that can be used if that happens to be your microcontroller family of choice.