Quasimotor? A Robot Bell Ringer

In large churches that still use real bells in their bell towers, a large number of them ring bells using a method called full circle ringing. In order to get the bells to sound at exactly the right time, the bells are rung by swinging the entire bell in an almost complete 360-degree arc. This helps to mitigate the fact that often times, the bells weigh more than the person ringing the bells. However, if you don’t have access to a belfry, you can practice ringing bells using this method with your own full circle bell simulator.

The frame for the bell was built from some leftover aluminum extrusion and allows the bell to easily swing on some old skateboard bearings. The mechanism is electrically controlled, too, using a hall effect sensor and a USB adapter so that it can be interfaced with a computer running a virtual bell ringing suite. Once some timing issues are worked out, the bell is all set up and ready to practice ringing changes.

If you’re as fascinated as we are to find that there are entire software suites available to simulate bell ringing, and an entire culture built around something that most of us, perhaps, wouldn’t have given a second thought to outside of walking past a church on a Sunday, there have been a surprising number of other bell-related projects over the years. Bells have been given MIDI interfaces and robotified, and other church instruments like a pipe organ have been created almost from scratch.

Solderless Breadboard Parasitics

Solderless breadboards are extremely handy. You always hear, of course, that you need to be careful with them at high frequencies and that they can add unwanted capacitance and crosstalk to a circuit. That stands to reason since you have relatively long pieces of metal spaced close together — the very definition of a capacitor.

[Ryan Jensen] did more than just listen to that advice. He built a circuit and used a scope to investigate just how much coupling he could expect with a simple digital circuit. Better still, he also made a video of it (see below). The test setup shows a single gate of a hex Schmitt trigger inverter with a sine wave input. The output transitions ring and also couple back into the input.

Continue reading “Solderless Breadboard Parasitics”