Will 2020 Be The Year Of Rust In The Linux Kernel?

One problem with modern programming languages is the reach their overly enthusiastic early adopters have nowadays thanks to the internet. As a result, everyone else’s first encounter with them are oftentimes some crude, fanboyish endeavors to rewrite every single established software project in that shiny new language — just because — which may leave an off-putting taste behind. However, Rust certainly seems to have outgrown this state by now, and with its rising popularity within the general developer population, it’s safe to say it will stick around. Will it fully replace C one day? Probably not, but there’s a big chance for coexistence, and [Nick Desaulniers] got the ball rolling for that within the Linux kernel.

Now, before you storm off pledging your allegiance to C by finding a new operating system: nothing is happening yet. [Nick] simply tested the waters for a possible future of Rust within the Linux kernel code base, which is something he’s planning to bring up for discussion in this year’s Linux Plumbers Conference — the annual kernel developer gathering. The interesting part is [Linus Torvalds]’s respone on the LKML thread, which leaves everyone hoping for a hearty signature Rust rant akin to his C++ one disappointed. Instead, his main concern is that a soft and optional introduction of the support in the build system would leave possible bugs hidden, and therefore should be automatically enabled if a Rust compiler is present — essentially implying that he seems otherwise on board.

We’ll see what comes of it, but with Rust language team lead [Josh Triplett] stating that enhancements benefiting and advancing a kernel integration are certainly imaginable for Rust itself, we might see interesting collaborations coming up in the near future. If you don’t want to wait for that and use Rust already today in a user-land driver, check out this 35c3 talk. And if that doesn’t go far enough for you, here’s a whole (non-Linux) kernel written in Rust.

Quasimotor? A Robot Bell Ringer

In large churches that still use real bells in their bell towers, a large number of them ring bells using a method called full circle ringing. In order to get the bells to sound at exactly the right time, the bells are rung by swinging the entire bell in an almost complete 360-degree arc. This helps to mitigate the fact that often times, the bells weigh more than the person ringing the bells. However, if you don’t have access to a belfry, you can practice ringing bells using this method with your own full circle bell simulator.

The frame for the bell was built from some leftover aluminum extrusion and allows the bell to easily swing on some old skateboard bearings. The mechanism is electrically controlled, too, using a hall effect sensor and a USB adapter so that it can be interfaced with a computer running a virtual bell ringing suite. Once some timing issues are worked out, the bell is all set up and ready to practice ringing changes.

If you’re as fascinated as we are to find that there are entire software suites available to simulate bell ringing, and an entire culture built around something that most of us, perhaps, wouldn’t have given a second thought to outside of walking past a church on a Sunday, there have been a surprising number of other bell-related projects over the years. Bells have been given MIDI interfaces and robotified, and other church instruments like a pipe organ have been created almost from scratch.

(mini)How-To: Refill Your DTG Inks

The number one and number two things asked after presentation of our DIYDTG were…
“How does it hold up in the wash?”
and…
“How did you change out the inks?”
While we’ve explained the first several times (regular ink washes out, DTG ink gets a little lighter but survives) we can hopefully answer the second with a tutorial.

Continue reading “(mini)How-To: Refill Your DTG Inks”