Candle Powered Lantern Isn’t As Silly As You Think

[Gilles Messier] at the Our Own Devices YouTube channel recently took a look at an interesting device — an electric lantern powered by a candle. At first glance, this sounds completely absurd. Why use a candle to power LEDs when you can use the light from the candle itself? This gadget has a trick up its sleeve, though. It lets candle light out and uses the heat from the candle flame to generate power for the LEDs.

The small Peltier “solid-state heat pump” module in the lantern acts as a thermoelectric generator, converting heat from the candle into electricity for the LEDs. The genius of the device is how it handles the candle “exhaust”.  A bimetallic disk in the chimney of the lantern closes when the air inside the device is hot. The Peltier device converts the heat differential to electricity, causing the air inside the lantern to cool. Meanwhile, the candle is beginning to starve for oxygen.  Once the air cools down a bit, the disk bends, allowing stale smoke out, and fresh air in, allowing the candle to burn brightly again. Then the cycle repeats.

[Gilles] does a deep dive into the efficiency of the lantern, which is worth the price of admission alone. These lanterns are pretty expensive — but Peltier modules are well-known by hackers. We’re sure it won’t be too hard to knock together a cheap version at home.

Continue reading “Candle Powered Lantern Isn’t As Silly As You Think”

Thermoelectric Paint Opens Prospect Of Easier Energy Harvesting

We will all be used to the thermoelectric effect in our electronic devices. The property of a junction of dissimilar conductors to either generate electricity from a difference in temperature (the Seebeck effect), or heating or cooling the junction (the Peltier effect). Every time we use a thermocouple or one of those mini beer fridges, we’re taking advantage of it.

Practical commercial thermoelectric arrays take the form of a grid of semiconductor junctions wired in series, with a cold side and a hot side. For a Peltier array the cold side drops in temperature and the hot side rises in response to applied electric current, while for a Seebeck array a current is generated in response to temperature difference between the two sides. They have several disadvantages though; they are not cheap, they are of a limited size, they can only be attached to flat surfaces, and they are only as good as their thermal bond can be made.

Researchers in Korea have produced an interesting development in this field that may offer significant improvements over the modules, they have published a paper describing a thermoelectric compound which can be painted on to a surface. The paint contains particles of bismuth telluride (Bi2Te3), and an energy density of up to 4mW per square centimetre is claimed.

Continue reading “Thermoelectric Paint Opens Prospect Of Easier Energy Harvesting”

I Am A Battery: Harvesting Heat Energy

If you get tired of charging batteries, you might be interested in [Hackarobot’s] energy harvesting demo. He uses a peltier device (although he’s really using it as a thermocouple which it is). A 1 farad super capacitor stores energy and an LTC3108 ultra low voltage converter with a 1:100 ratio transformer handles the conversion to a useful voltage.

The truth is, the amount of energy harvested is probably pretty small–he didn’t really characterize it other than to light an LED. In addition, we wondered if a proper thermocouple would work better (some old Russian radios used thermocouples either in fireplaces or kerosene lamps to avoid requiring batteries). Although a Peltier device and a thermocouple both use the Seebeck effect, they are optimized for different purposes. Thermocouples generate voltage from a temperature differential and Peltier modules generate temperature differentials from voltage.

However, as [Hackarobot] points out, the same technique might be useful with other alternate power sources like solar cells or other small generators. The module used has selectable output voltages ranging from 2.35V to 5V.

Continue reading “I Am A Battery: Harvesting Heat Energy”

Energy Harvesting Peltier Ring

[Sean] is by no means an electrical engineer, but when he discovered the magic of Peltier plates he knew he had to make a project with them. This is his Energy Harvesting Peltier Ring.

The effect he is harnessing is called the SeeBeck Effect — the process of generating electricity through temperature differentials. He has shown how peltier plates work to many people, and, as you can guess, most people think they are amazing (free energy wow!). Unfortunately, most peltier plates are rather large and bulky, so [Sean] decided he wanted to try to design something small enough that could fit on a ring. Just a proof of concept, to light a tiny SMD LED.

The tiny Peltier plate he found generates about 0.3V with a temperature differential of about 20C — not bad, but it won’t light up any standard LEDs at that voltage! He started looking into voltage steppers and discovered Linear Technology’s 3108 Ultralow Voltage Step-up converter and Power Manager — a surface mount chip capable of scaling 0.3V to 5V. The only problem? [Sean’s] never done surface mount soldering.

His first circuit was built on a prototyping board, and after it worked successfully, he designed a PCB using Fritzing. Another success! Prototyping complete, it was now time to try to downsize the PCB even more to fit on a ring. Realizing there was no way he was going to fit it on a single ring, he decided to make a double ring out of CNC machined aluminum. He made use of his school’s CNC shop and the ring came out great. It works too! The room has to be fairly cool for the LED to light, but [Sean] definitely proved his concept. Now to make it even smaller!