Heating Mars On The Cheap

Mars is fairly attractive as a potential future home for humanity. It’s solid, with firm land underfoot. It’s able to hang on to a little atmosphere, which is more than you can say about the moon. It’s even got a day/night cycle remarkably close to our own. The only problem is it’s too darn cold, and there’s not a lot of oxygen to breathe, either.

Terraforming is the concept of fixing problems like these on a planet-wide scale. Forget living in domes—let’s just make the whole thing habitable!

That’s a huge task, so much current work involves exploring just what we could achieve with today’s technology. In the case of Mars, [Casey Handmer] doesn’t have a plan to terraform the whole planet. But he does suggest we could potentially achieve significant warming of the Red Planet for $10 billion in just 10 years. Continue reading “Heating Mars On The Cheap”

The Challenge Of Weather Modification In The Face Of Climate Change

Over the past decades we have been able to observe a change in the Earth’s climate, caused by an increasing amount of energy being retained in the atmosphere. This in turn has affected weather systems around the globe, causing more extreme weather. As a result, the prospect of weather control is more relevant than ever for the nations which are most directly impacted by severe rain and winds.  Although the concept of weather modification is not new, it used to be primarily focused on rather limited aspects, such as cloud seeding to increase precipitation.

Recent proposals such as Japan’s weather modification moonshot program seek to find ways to prevent or lessen the impact of torrential rains, typhoons and similar extreme weather events which accompany climate change.  This proposal is part of Japan’s multi-topic Moonshot R&D program which seeks to advance the state of the art in a wide range of fields in a very significant way by 2050. As far as weather modification is concerned, this naturally raises many questions. Clearly we are capable of affecting the climate through emissions of e.g. greenhouse gases and large-scale construction, but are there ways in which humans can affect the climate and weather in a more refined manner that benefits society, or is this something which will remain beyond our grasp for the foreseeable future?

Continue reading “The Challenge Of Weather Modification In The Face Of Climate Change”

Earth Day: Terraforming The Earth

In 300 years, New York, London, Tokyo, and just about every major city on the planet will be underwater. Sub-Saharan Africa will extend to the equator. Arizona will get hurricanes. These are huge problems, but luckily there are a few very creative people working to terraform the Earth for this year’s Hackaday Prize.

[Danny] is working to stop desertification, and stop blowing drifts of sand from encroaching on valuable farm land. How does his project aim to do this? There are a few techniques that can mitigate or even stop the expanding deserts, including reforestation, proper water management, and using woodlots and windbreaks just like in the 1930s dust bowl.

With the right tools, these techniques are fairly simple to implement. For that, [Danny] is working on a biodegradable lattice framework that will hold soil in place just like plant roots would. It’s an interesting concept, and we can’t wait to see what kind of prototypes [Danny comes up with.

The Terra Spider takes a different tack. In true post-apocalyptic fashion, the Terra Spider will deploy thousands of robots capable of moving and removing biomatter from the environment. Each of the Terra Spiders is able to monitor the local environment, and a few dozen of these bots connected by a wireless network will be able to address a specific site’s needs to make a landscape the way it should be.

 

Terra Spider Repairs And Resurfaces New Frontiers

Is your landscape congested with toxic waste, parched, or otherwise abandoned? The Terra Spider may be your answer to new life in otherwise barren wastelands.

Bred in the Digital Craft Lab at the California College of the Arts, the current progress demonstrates the principle of deploying multiple eight-legged drones that can drill and deploy their liquid payload, intended to “repair or maintain” the landing site.

To deliver their project, students [Manali Chitre], [Anh Vu], and [Mallory Van Ness] designed and assembled a laser-cut octopod chassis, an actuated drilling mechanism, and a liquid deployment system all from easily available stock components and raw materials. While project details are sparse, the comprehensive bill-of-materials gives us a window into the process of putting together the pieces of a Terra Spider. The kinematics for movement are actuated by servos, a Sparkfun gear-reduced motor enables drilling, and a peristaltic pump handles the payload deployment.

It’s not every day that flying robots deploy drill-wielding spider drones. Keep in mind, though, that the Terra Spider is a performance piece, a hardware-based demonstration of a bigger idea, in our case: remote coverage and sample deployments in a barren wasteland. While, this project is still a work-in-progress, the bill-of-materials and successful deployment demos both testify towards this project’s extensive development.

With the earnest intent of repairing withering environments, perhaps this project has a future as an entry into this year’s Earth-saving Hackaday Prize….

Coming soon to a galaxy near you!

Continue reading “Terra Spider Repairs And Resurfaces New Frontiers”