Earth Rovers Explore Our Own Planet

While Mars is currently under close scrutiny by NASA and other space agencies, there is still a lot of exploring to do here on Earth. But if you would like to explore a corner of our own planet in the same way NASA that explores Mars, it’s possible to send your own rover to a place and have it send back pictures and data for you, rather than go there yourself. This is what [Norbert Heinz]’s Earth Explorer robots do, and anyone can drive any of the robots to explore whatever locations they happen to be in.

A major goal of the Earth Explorer robot is to be easy to ship. This is a smaller version of the same problem the Mars rovers have: how to get the most into a robot while having as little mass as possible. The weight is kept to under 500g, and the length, width, and height to no more than 90cm combined. This is easy to do with some toy cars modified to carry a Raspberry Pi, a camera, and some radios and sensors. After that, the robots only need an interesting place to go and an Internet connection to communicate with Mission Control.

[Norbert] is currently looking for volunteers to host some of these robots, so if you’re interested head on over to the project page and get started. If you’d just like to drive the robots, though, you can also get your rover fix there as well. It’s an interesting project that will both get people interested in exploring Earth and in robotics all at the same time. And, if you’d like to take the rover concept beyond simple exploration, there are other machines that can take care of the same planet they explore.

Continue reading “Earth Rovers Explore Our Own Planet”

Living on Mars: the Stuff You Never Thought About

In The Martian we saw what kind of hacking was needed to stay alive for a relatively short while on Mars, but what if you were trying to live there permanently? Mars’ hostile environment would affect your house, your transportation, even how you communicate. So here’s a fun thought experiment about how you’d live on Mars as part of a larger community.

Not Your Normal House

Mars One living units under regolith
Mars One living units under regolith, Source video

Radiation on Mars comes from solar particle events (SPE) and galactic cosmic radiation (GCR). Mars One, the organization planning one-way trips to Mars talks about covering their habitats in several meters of regolith, a fancy word for the miscellaneous rocky material covering the bedrock. Five meters provides the same protection as the Earth’s atmosphere — around 1,000 g/cm2 of shielding. A paper from the NASA Langley Research Center says that the largest reduction comes from the top 15 to 20 cm of regolith. And so our Mars house will have an underlying structure but the radiation protection will come from somewhere between 20 cm to a few meters of regolith. Effectively, people will be living underground.

On Earth, producing water and air for your house is not something you think of doing, let alone disposing of exhaled CO2. But Mars houses will need systems for this and more.

Continue reading “Living on Mars: the Stuff You Never Thought About”

Hacking On Mars In “The Martian”

It’s been 6 years since the hacker’s treat of a book, “The Martian” by Andy Weir, was self-published, and 2 years since the movie came out. We’ve talked about it briefly before, but enough time has passed that we can now write-up the book’s juicier hacks while being careful to not give away any plot spoilers. The book has more hacks than the movie so we’re using the book as the source.

For anyone unfamiliar with the story, Mark Watney is an astronaut who’s left for dead, by himself, on Mars. To survive, he has a habitat designed for six, called the Hab, two rovers, the Mars Descent Vehicle (MDV) they arrived in, and the bottom portion of the Mars Ascent Vehicle (MAV), the top portion of which was the rocket that his five crewmates departed in when they left him alone on the inhospitable desert planet. If you haven’t read it yet, it’s easy to finish over a long weekend. Do yourself a favor and pick it up after work today.

Making Water

Watney’s major concern is food. They sent up some potatoes with the mission which will sprout roots from their eyes. To grow potatoes he needs water.

One component of the precious H2O molecule is of course the O, oxygen. The bottom portion of the MAV doesn’t produce oxygen, but it does collect CO2 from the Martian atmosphere and stores it in liquid form. It does this as one step in producing rocket fuel used later to blast off from the surface.

Continue reading “Hacking On Mars In “The Martian””

PUFFER: A Smartphone-Sized Planetary Explorer

Is there room on Mars and Europa for cute robots? [NASA] — collaborating with [UC Berkley] and [Distant Focus Corporation] — have the answer: PUFFER, a robot inspired by origami.

PUFFER — which stands for Pop-Up Flat-Folding Explorer Robot — is able to sense objects and adjust its profile accordingly by ‘folding’ itself into a smaller size to fit itself into nooks and crannies. It was designed so multiple PUFFERs could reside inside a larger craft and then be deployed to scout otherwise inaccessible terrain. Caves, lava tubes and shaded rock overhangs that could shelter organic material are prime candidates for exploration. The groups of PUFFERs will send the collected info back to the mother ship to be relayed to mother Earth.

We’ve embedded the video of the bot folding it’s wheels down to pass a low-bridge. You can get a view of the wider scope of functionality for the collection of demos on the project page.

Continue reading “PUFFER: A Smartphone-Sized Planetary Explorer”

Growing Plants on Mars… on Earth

One of the biggest challenges of traveling to Mars is that it’s far away. That might seem obvious, but that comes with its own set of problems when compared to traveling to something relatively close like the Moon. The core issue is weight, and this becomes a big deal when you have to feed several astronauts for months or years. If food could be grown on Mars, however, this would make the trip easier to make. This is exactly the problem that [Clinton] is working on with his Martian terrarium, or “marsarium”.

The first task was to obtain some soil that would be a good analog of Martian soil. Obtaining the real thing was out of the question, as was getting similar dirt from Hawaii. [Clinton] decided to make his own by mixing various compounds from the hardware store in the appropriate amounts. From there he turned to creating the enclosure and filling it with the appropriate atmosphere. Various gas canisters controlled by gas solenoid valves mixed up the analog to Martian atmosphere: 96% dioxide, 2% argon, and 2% nitrogen. The entire experiment was controlled by an Intel Edison with custom circuits for all of the sensors and regulating equipment. Check out the appropriately dramatic video of the process after the break.

While the fern that [Clinton] planted did survive the 30-day experiment in the marsarium, it wasn’t doing too well. There’s an apparent lack of nitrogen in Martian soil which is crucial for plants to survive. Normally this is accomplished when another life form “fixes” nitrogen to the soil, but Mars probably doesn’t have any of that. Future experiments would need something that could do this for the other plants, but [Clinton] notes that he’ll need a larger marsarium for that. And, if you’re not interested in plants or Mars, there are some other interesting ramifications of nitrogen-fixing as well.

Continue reading “Growing Plants on Mars… on Earth”

The First Bug On Mars

Interplanetary probes were a constant in the tech news bulletins of the 1960s and 1970s. The Space Race was at its height, and alongside their manned flights the two superpowers sent unmanned missions throughout the Solar System. By the 1980s and early 1990s the Space Race had cooled down, the bean counters moved in, and aside from the spectacular images of the planets periodically arriving from the Voyager series of craft there were scant pickings for the deep space enthusiast.

The launch in late 1996 of the Mars Pathfinder mission with its Sojourner rover then was exciting news indeed. Before Spirit, the exceptionally long-lived Opportunity, and the relatively huge Curiosity rover (get a sense of scale from our recent tour of JPL), the little Sojourner operated on the surface of the planet for 85 days, and proved the technology for the rovers that followed.

In these days of constant online information we’d see every nuance of the operation as it happened, but those of us watching with interest in 1997 missed one of the mission’s dramas. Pathfinder’s lander suffered what is being written up today as the first bug on Mars. When the lander collected Martian weather data, its computer would crash.

Like many other spacecraft, the lander’s computer system ran the real-time OS VxWorks. Of the threads running on the craft, the weather thread was a low priority, while the more important task of servicing its information bus was a high priority one. The weather task would hog the resources, causing the operating system equivalent of an unholy row in our Martian outpost. A priority inversion bug, and one that had been spotted before launch but assigned a low priority.

You can’t walk up to a computer on another planet and swap out a few disks, so the Pathfinder team had to investigate the problem on their Earthbound replica of the lander. The fix involved executing some C code on an interpreter prompt on the spacecraft itself, something that would give most engineers an extremely anxious moment.

The write-up is an interesting read, it’s a translation from a Russian original that is linked within it. If the work of the JPL scientists and engineers interests you, this talk from the recent Hackaday superconference might be of interest.

[via Hacker News]

Basement 3D Printer Builds Are Too Easy. Try Building One on Mars.

[Tony Stark Elon Musk] envisions us sending one million people to Mars in your lifetime. Put aside the huge number or challenges in that goal — we’re going to need a lot of places to live. That’s a much harder problem than colonization where mature trees were already standing, begging to become planks in your one-room hut. Nope, we need to build with what’s already up there, and preferably in a way that prepares structures before their inhabitants arrive. NASA is on it, and by on it, we mean they need you to figure it out as part of their 3D Printed Hab Challenge.

The challenge started with a concept phase last year, awarding $25k to the winning team for a plan to use Martian ice as a building material for igloo-like habs that also filter out radiation. The top 30 entries were pretty interesting so check them out. But now we’re getting down to the nitty-gritty. How would any of these ideas actually be implemented? If you can figure that out, you can score $2M.

Official rules won’t be out until Friday, but we’d love to hear some outrageous theories on how to do this in the comments below. The whole thing reminds us of one of the [Brian Herbert]/[Kevin J. Anderson] Dune prequels where swarms of robot colonists crash-land on planets throughout the universe and immediately start pooping out building materials. Is a robot vanguard the true key to planet colonization, and how soon do you think we can make that happen? We’re still waiting for robot swarms to clean up our oceans. But hey, surely we can do both concurrently.