VCF East: The Desktop ENIAC

The ENIAC, or Electronic Numerical Integrator and Computer, is essentially the Great Great Grandfather of whatever device you’re currently reading these words on. Developed during World War II for what would be about $7 million USD today, it was designed to calculate artillery firing tables. Once word got out about its capabilities, it was also put to work on such heady tasks as assisting with John von Neumann’s research into the hydrogen bomb. The success of ENIAC lead directly into the development of EDVAC, which adopted some of the now standard computing concepts such as binary arithmetic and the idea of stored programs. The rest, as they say, is history.

But ENIAC wasn’t just hugely expensive and successful, it was also just plain huge. While it’s somewhat difficult for the modern mind to comprehend, ENIAC was approximately 100 feet long and weighed in at a whopping 27 tons. In its final configuration in 1956, it contained about 18,000 vacuum tubes, 7,000 diodes, 70,000 resistors, 10,000 capacitors, and 6,000 switches. All that hardware comes with a mighty thirst for power: the ENIAC could easily suck down 150 kW of electricity. At the time this all seemed perfectly reasonable for a machine that could perform 5,000 instructions per second, but today an Arduino would run circles around it.

This vast discrepancy between the power and size of modern hardware versus such primordial computers was on full display at the Vintage Computer Festival East, where [Brian Stuart] demonstrated his very impressive ENIAC emulator. Like any good vintage hardware emulator, his project not only accurately recreates the capabilities of the original hardware, but attempts to give the modern operator a taste of the unique experience of operating a machine that had its heyday when “computers” were still people with slide rules.

How Low Can You Go?

Given the monstrous rift between the computational power of the ENIAC versus something as pedestrian as the Raspberry Pi, it’s natural to wonder just how much abstraction is required to emulate the hardware. We occasionally talk about “cycle accurate” emulation when dealing with older hardware: which essentially means that the emulator can run software from the original machine without the software needing to be modified. The emulator is accurate insofar as the software running on it cares to look, but it does’t mean the underlying methods are the same. This lets an emulator run the older software while using modern tricks to help improve overall performance.

But with a computer as slow as the ENIAC, speed isn’t really a concern. We’ve got plenty of power to burn, so how accurate can you get? Originally, [Brian] thought it would be interesting to simulate ENIAC on the circuitry level. But given that part count, and the fact that the documentation really only has a rough explanation of the internal circuitry, he thought that might be a tall order. In the end, he decided to simulate the ENIAC down to the actual pulses that would travel though the machine while in operation. This level of emulation makes his software exceptionally accurate, and indeed it can run any example program from the original ENIAC technical manuals, but does mean that even on modern computers the simulation can run slower than on the actual ENIAC. But the increased fidelity, especially for those who wish to truly understand how early computers like this operated, is worth waiting around for.

The ENIAC Experience

It would have been easier to create a command line emulator for the ENIAC that just dumped its results to the terminal (and indeed others have done just that), but that wouldn’t give you the feeling of actually running a computer that was large enough to take up a building. For that, [Brian] created a number of visuals that use actual images of the ENIAC panels. This gives the user the impression of actually standing in front of the computer, watching the banks merrily blink away as it works through the given program.

While it’s not required to use the emulator, [Brian] even went as far as recreating the handheld control unit the ENIAC operators would have used. He mentions this peripheral is often overlooked, and in his research was only able to find a single clear shot of what the device looked like for him to base his 3D printed model on.

ENIAC: The Home Game

[Brian] has made the source code and compiled binaries for his ENIAC simulator available for anyone who wishes to try their hand at commanding a virtual representation of the original “Big Iron”. He’s even provided binaries for machines as lowly as the C.H.I.P (if you can find one, that is) so it doesn’t take much gear to get your own mini ENIAC up and running. You’ll have to provide your own hydrogen bomb to research, though.

If you’d like a crash course on the rather alien methods of programming the beast, our very own [Al Williams] recently wrote up a fantastic piece about the ENIAC, including some information on operating it within a virtual environment.

Great Beginnings for Vintage Computing in Seattle; VCF PNW

The pitch to my wife was simple: “Feel like spending the weekend in Seattle?” That’s how I ended up at the inaugural Vintage Computer Festival Pacific Northwest last weekend, and I’m glad we made the five-hour drive into The Big City to check it out. Hackaday is a VCF sponsor, after all, so it seemed like a great excuse to make the trip. That it ended up being two consecutive days of great Seattle weather was only icing on the cake of being able to spend time with fellow retro computer aficionados and their dearest bits of old hardware, in a great museum dedicated to keeping computer history alive and accessible.

The fact that Seattle, home of Microsoft, Amazon, and dozens of other tech companies, has until now been left out of the loop in favor of VCF East in New Jersey and VCF West in Mountain View seems strange, but judging by the reception, VCF PNW is here to stay and poised to grow. There were 20 exhibitors for this go around, showing off everything from reanimated PDP-11 and Altair 8800 control panels to TRS-80s from Model 1 through to the CoCo. Almost every class of reasonably transportable retro hardware was represented, as well as some that pushed the portability envelope, like a working PDP-8 and a huge Symbolics 3640 LISP workstation.

Continue reading “Great Beginnings for Vintage Computing in Seattle; VCF PNW”

Next Week: Vintage Computer Festival Pacific Northwest

Next week something magical is happening. Seattle is getting a Vintage Computer Festival. It’s the Vintage Computer Festival Pacific Northwest, and it’s happening Saturday, February 10th and Sunday, February 11th at the Living Computers Museum and Labs.

As with all Vintage Computer Festivals, this is one with plenty of exhibits, speakers, and the ever-popular consignment shop. A few of the more interesting exhibits include a demonstration of the Syntauri alphaSyntauri, a synthesizer card and controller designed for the Apple II. When it was released in 1980, this was the first affordable digital synthesizer that competed against the Synclavier and Fairlight CMI. The difference? Synclaviers cost as much as a house, where the alphaSyntauri cost as much as a car. Also on deck is the dis-integrated MOnSter6502, a complete NMOS 6502 constructed out of individual, surface mount transistors. The Digi-Comp II from Evil Mad Scientist will be there, there will be BlinkenBones, and for anyone who wants to assemble their own front panel for a vintage minicomputer, [Oscar Vermeulen] will be there with the Pi-DP/8. This isn’t an event to miss.

As an aside, we’d really like to commend the Vintage Computer Federation for their incredible work in putting these shows together. The VCF West at the Computer History Museum in Mountain View is an incredible show, VCF Southeast has some amazing displays, and VCF East in New Jersey is a pretty incredible gathering going down May 18th through the 20th this year. The people working behind the scenes to make these shows happen are doing a service for all vintage computers and performing digital archeology that benefits us all.

Hackaday is proud to be a sponsor of VCF Pacific Northwest.

This Weekend: Vintage Computer Festival Zurich

This weekend, November 18th and 19th, the greatest vintage computer conference in Europe is going down. It’s the Vintage Computer Festival Europe, and if you’re around Zurich this weekend, we highly recommend that you check it out.

On deck for this year’s VCF Europe is an incredible amount of amazing retrotechnology. A demonstration of high-resolution graphics without using computer memory will be found in a few Tektronix storage tube terminals (their Wikipedia entry is phenomenal, by the way). There will be a few Olivetti microcomputers on display demonstrating Italy’s contribution to the computer revolution. A PDP 6 will be recreated, and a 1964 IBM 360/30 will be revived. There will be discussions on using logarithms as a basis for computers. [Oscar], creator of the PiDP-8/I will be bringing his latest project, an exquisite miniature recreation of a PDP-11/70, with a molded enclosure and purple toggle switches.

This is a retrocomputer conference where an Apple I is the least interesting computer on display, an extremely difficult feat to pull off. VCFe will be held at Rote Fabrik in Zurich, and tickets are five units of the local currency per day. You can check out the festival on Twitter, Google+, and the main website.

This Weekend: Vintage Computer Festival West

Next weekend is the Vintage Computer Festival West, held at the Computer History Museum. Hackaday is once again proud to sponsor this event that brings together the people and hardware that drove the information revolution. [Bil Herd] and [Joshua Vasquez] will be on hand representing the Hackaday Crew.

This year’s talks show an impressive lineup of people. [Bil Herd] will be on stage with a collection of other engineers who secured Commodore’s place in history. The Computer History Museum has a very active restoration program for original computer hardware. Friend of Hackaday, [Ken Shirriff], has been working on a restoration of the Xerox Alto and is on the panel giving a talk about the process. And just to cherry-pick one more highlight, there’s a talk on system debugging before you even turn the thing on — a topic that can save you from having a very bad day with very ancient hardware.

A great part of VCF is that the exhibits are often either hands-on or demonstrations so you can actually play around with hardware which most people have never even seen in person. Add to that the collection at the Computer History Museum plus some extra exhibits they have planned for the event and you’re likely to run out of time before you make your way through everything.

Since we’ve mentioned the Computer History Museum, we also have some upcoming news. A bit later this month, Hackaday Contributor-at-Large [Voja Antonic] has been invited to visit the museum, record his oral history, and deliver to their collection an original Galaksija computer — wildly successful first as a kit and then as a manufactured computer which he built in Yugoslavia 1983. Congratualtions [Voja]!

Old Part Day: Voltage Controlled Filters

For thirty years, the classic synths of the late 70s and early 80s could not be reproduced. Part of the reason for this is market forces — the synth heads of the 80s didn’t want last year’s gear. The other part for the impossibility to build new versions of these synths was the lack of parts. Synths such as the Prophet 5, Fairlight CMI, and Korg Mono/Poly relied on voltage controlled filter ICs — the SSM2044 — that you can’t buy new anymore. If you can source a used one, be prepared to pay $30. New old stock costs about $100.

Now, these chips are being remade. A new hardware revision for this voltage controlled filter has been taped out by the original hardware designer, and these chips are being produced in huge quantities. Instead of $100 for a new old stock chip, this chip will cost about $1.60 in 1000 unit quantities.

The list of synths and music boxes sporting an SSM2044 reads like a Who’s Who of classic electronic music machines. E-Mu Drumulators, Korg polyphonic synths, Crumars, and even a Doepfer module use this chip in the filter section. The new chip — the SSI2144 — supposedly provides the same classic tone but adds a few improvements such as improved pin layouts, an SSOP package, and more consistent operation from device to device.

This news follows the somewhat recent trend of chip fabs digging into classic analog designs of the 70s, realizing the chips are being sold for big bucks on eBay, and releasing it makes sense to spin up a new production line. Last year, the Curtis CEM3340 voltage controlled oscillator was rereleased, giving the Oberheim OB, Roland SH and Jupiter, and the Memory Moog a new lease on life. These chips aren’t only meant to repair broken, vintage equipment; there are a few builders out there who are making new devices with these rereleased classic synths.

 

The Best Of VCF East

Last weekend was the Vintage Computer Festival East in Wall, New Jersey. While this yearly gathering of nerds nerding out on old computers might be a bit too obscure for some, there are always amazing exhibits of actual historical importance. A few Enigma machines showed up, and the rarest Commodore goodies made an appearance. We saw the pre-history of Hackaday and ‘maker’ culture with Southwest Technical Products Corporation, and found out it was probably, possible to build a RepRap in the 80s. You can’t know where you’re going unless you know where you came from, and even though the old timers were a bit more grizzled than us the Vintage Computer Festival shows how little things have actually changed.

What was the coolest and weirdest stuff at VCF? What does the Silverball pinball museum look like? Check that out below.

Continue reading “The Best Of VCF East”