The USB Type-C Cable That Will Break Your Computer

USB has been on our desktops and laptops since about 1997 or so, and since then it has been the mainstay of computer peripherals. No other connector is as useful for connecting mice, keyboards, webcams, microcontroller development boards, and everything else; it’s even the standard power connector for phones. The latest advance to come out of the USB Implementers Forum is the USB Type-C connector, a device with gigabits of bandwidth and can handle enough current to power a laptop. It’s the future, even if Apple’s one-port wonder isn’t.

Ground is red, V is Black. Photo: Benson Leung
Ground is red, V is black. Photo: Benson Leung

The cable of the future is, by default, new. This means manufacturers are still figuring out the port, and how to wire it up. You would think remembering ‘red = power, black = ground’ is easy, but some manufacturers get it so terribly wrong.

[Benson Leung] is a Google engineer who works on the Chromebook Pixel products, a huge proponent of the USB Type-C connector, and a very prolific reviewer of USB Type-C connectors on Amazon. The latest cable he tested destroyed his test equipment, including a $1500 Chromebook Pixel 2. How did a cable manage to do this? The manufacturer switched black and red.

The cable in question was a SurjTech 3M cable that has thankfully been taken down from Amazon. Swapping GND and Vbus weren’t the only problem – the SuperSpeed wires were missing, meaning this was effectively only a USB 2 cable with a Type-C connector. The resistor required by USB spec was the wrong value, and was configured as a pull-down instead of a pull-up.

This isn’t an issue of a cable not meeting a design spec. Ethernet cables, specifically Cat6 cables, have been shown to work but fail to meet the specs for Cat6 cables. That’s shady manufacturing, but it won’t break a computer. This is a new low in the world of computer cables, but at least the cable has disappeared from Amazon.

This is My 3D Printed Brain!

This hack is a strange mixture of awesome and ghoulish. [Andrew Sink] created a 3D printed version of his brain. He received a CD from an MRI session that contained the data obtained by the scan. Not knowing what to do with it he created a model of his brain.


Out of a number of images, some missing various parts of his head, he selected the one that was most complete. This image he brought into OisriX, a Mac program for handling DICOM files. He worked on the image for an hour dissecting away his own eyes, skull, and skin. An STL file containing his brain was brought over to NetFabb to see how it looked. There was still more dissection needed so [Andrew] turned to Blender. More bits and pieces of his skull’s anatomy were dissected to pare it down to just the brain. But there were some lesions at the base of the brain that needed to be filled. With the help of [Cindy Raggio] these were filled in to complete the 3D image.

The usual steps sent it to the 3D printer to be produced at 0.2 mm resolution. It only took 49 hours to print at full-size. This brain was printed for fun, but we’ve seen other 3D printed brain hacks which were used to save lives. How many people do you know that have a spare brain sitting around?

Cheap Smartwatch Teardown

A proper smartwatch can cost quite a bit of money. However, there are some cheap Bluetooth-connected watches that offer basic functions like show your incoming calls, dial numbers and display the state of your phone battery. Not much, but these watches often sell for under $20, so you shouldn’t expect too much.

Because they’re so cheap, [Lee] bought one of these (a U8Plus) and within an hour he had the case opened up and his camera ready. As you might expect, the biggest piece within was the rechargeable battery. A MediaTek MT6261 system on a chip provides the smart part of the watch.

Continue reading “Cheap Smartwatch Teardown”

Crappy Robots And Even Crappier Electronics Kits

Robots and DIY electronics kits have a long history together. There probably isn’t anyone under the age of forty that hasn’t had some experience with kit-based robots like wall-hugging mouse robots, a weird walking robot on stilts, or something else from the 1987 American Science and Surplus catalog. DIY robot kits are still big business, and walking through the sales booths of any big Maker Faire will show the same ideas reinvented again and again.

[demux] got his hands on what is possibly the worst DIY electronics kit in existence. It’s so incredibly bad that it ends up being extremely educational; pick up one of these ‘introduction to electronics’ kits, and you’ll end up learning advanced concepts like PCB rework, reverse engineering, and Mandarin.

Continue reading “Crappy Robots And Even Crappier Electronics Kits”

Let’s Blow Up an Explosive Lightning Arrestor

Lightning is some nasty stuff. Luckily, it doesn’t have a very long lifespan. [BigClive] decided to tear down an 11KV lighting arrestor used in power distribution systems. The fiberglass core has silicone rubber water-shedding disks that make the unit look sort of floppy, but inside is some serious hardware.

To protect the circuit, metal oxide varistors shunt high voltage from a lightning strike to ground as you’d expect. The interesting part is how the device deals with failure. It would be a disaster if the device shorted the 11KV power line to ground for any length of time due to a fault. To prevent that problem, a resistor heats up when struck by lightning and triggers an explosive charge that disconnects the ground wire and releases a flag to indicate the failure.

[BigClive] triggered the charge in the video below. So if you like to see things explode in a bucket of water, you’ll enjoy the video.

Continue reading “Let’s Blow Up an Explosive Lightning Arrestor”

Reverse Engineering the ARM ALU

[Dave] wanted to learn more about the ARM architecture, so he started with an image of the ARMV1 die. If you’ve had some experience looking at CPU die, you can make some pretty good guesses at what parts of the chip have certain functions. [Dave], however, went further. He reverse engineered the entire ALU–about 2,200 transistors worth.

Continue reading “Reverse Engineering the ARM ALU”

SRF01 Ultrasonic Sensor Teardown

The SRF01 is a popular ultrasonic sensor used primarily for range finding applications. [Jaanus] discovered that they had a few flaws, including not working after being dropped. The faulty ones began to pile up, so he decided sensor_01to tear one apart and put his engineering skills to use.

The SRF01 is unique in that it only uses a single transducer, unlike the SRF04, which uses two. Using only one transducer presents a problem when measuring very close distances. The transducer emits a pulse of sound and then must listen for the echo. The smaller the distance, the smaller the time interval between the pulse and when the echo returns. There is a fundamental limit to this time as the transducer has to recover from what is known as ringing. [Jaanus] discovered that the SRF01 solves the ringing problem with the use of a PIC24’s ADC and its 500 ksps (kilosamples per second) rate. This allows it to measure very close distances.

Be sure to check out the teardown for more details on how the SRF01 works.