This Rocket Cookstove Is Hot Stuff!

If you search the web, you will learn that humans began to cook their food with fire a long time ago. Indeed, you might expect that there would be nothing new in the world of  flame-based cookery. Fortunately [Bongodrummer] didn’t get that particular memo, because he’s created a rather unusual rocket stove griddle that is capable of cooking a significant quantity of food.

A rocket stove is designed to achieve as efficient use of energy as possible by achieving the most complete burn of high surface area fuel. It features a small combustion area and a chimney with supplementary air feed to ensure that exhaust gasses also burn. This one feeds all those hot gasses directly to the griddle, before taking them away up a pair of flues. As an added bonus there is a dome attachment for a pizza oven, made when a previous project had some left-over building material. Take a look at the comprehensive build video below the break.

Perhaps alarmingly the combustion chamber and chimney are made from a gas cylinder, but the use of a central heating radiator for the griddle is an extremely good idea. A vortex air inlet at the bottom and a secondary air injector further up the chimney complete the unit, making for a worthy replacement for a traditional barbecue.

It’s worth saying, this isn’t the first rocket stove we’ve seen, there was this simple design as well as this very well engineered space heater.

Continue reading “This Rocket Cookstove Is Hot Stuff!”

Edible Art From A Robot Pancake Printer

In case you didn’t know it, pancake art is a thing. People are turning out incredible edible artwork using squeeze bottles and pancake batter. But even if you’re not terribly artistic, you can still amaze your breakfast buddies with this robotic pancake printer.

At its simplest – and in our opinion its most impressive – pancake art involves making patterns with thin batter on a hot griddle. The longer the batter is cooked, the darker it becomes, and art happens. To capitalize on this, [Trent], [Kevin], [Sunny] and [Isaac] built a 2-axis gantry with a working area the size of an electric griddle. A bottle is pressurized with a small air pump and controlled by a solenoid valve to serve as a batter extruder, and an Arduino controls everything. Custom pancake design software lets you plan your next masterpiece before committing it to batter.

Sadly, the video below shows us that the team didn’t include an automatic flipper for the pancake, but no matter – that’ll make a great feature for the next version. Maybe something like this?

Continue reading “Edible Art From A Robot Pancake Printer”

CNC-PBDU (pancake Batter Dispenser Unit)

Flapjacks taste infinitely better when they’re machine-made. Well, that’s true for [Mexican Viking] who built an automatic pancake maker to the delight of his family.

Obviously, the building material of choice is Lego. The machine consists of a base with two linear gears on either side. A gantry is held high above this base, travelling upon geared towers to either side. The writing nozzle, fashioned out of ketchup bottles, can move back and forth along this gantry for a full range of motion along the X and Y axes. Lego pneumatic pumps supply pressurized air which forces the batter out of the bottle reservoir. This dispensing system is extremely clever and worth reading a bit more about. But if you just want us to make with the good stuff, you can see it grilling up pancakes in the video after the break.

The only thing missing is automatic flipping.

Continue reading “CNC-PBDU (pancake Batter Dispenser Unit)”

Reworking Ball Grid Array Circuit Board Components At Home

[Jack Gassett] is developing a new breakout board for an FPGA. The chip comes in a ball grid array (BGA) package which is notoriously difficult to solder reliably. Since he’s still in development, the test boards are being assembled in his basement. Of the first lot of four boards, only one is functional. So he’s setting out to rework the bad boards and we came along for the ride.

To reflow the surface mount components he picked up a cheap pancake griddle. The first thing [Jack] does is to heat up the board for about two minutes, then pluck off the FPGA and the FTDI chips using a vacuum tweezers. Next, the board gets a good cleaning with the help of a flux pen, some solder wick, and a regular soldering iron. Once clean, he hits the pads with solder paste from a syringe and begins the soldering process. BGA packages and the solder paste itself usually have manufacturer recommended time and temperature guidelines. [Jack] is following these profiles using the griddle’s temperature controller knob and the timer on an Android phone. In the video after the break you can see that he adjusts the timing based on gut reaction to what is going on with the solder. After cleaning up some solder bridges on the FTDI chip he tested it again and it works!

Continue reading “Reworking Ball Grid Array Circuit Board Components At Home”