Hackaday Links: November 24, 2019

It barely seems like it, but it’s been a week since the 2019 Hackaday Superconference wrapped up in sunny Pasadena. It was an amazing weekend, filled with fun, food, camaraderie, and hacks galore. For all who were there, it’ll likely take quite some time before spinning down to Earth again from the post-con high. For those who couldn’t make it, or for those who did but couldn’t squeeze in time for all those talks with everything else going on, luckily we’ve got a ton of content for you to review. Start on the Hackaday YouTube channel, where we’ve got videos already posted from most of the main stage talks. Can’t-miss talks include Chris Gammell’s RF deep-dive, Kelly Heaton’s natural electronic art, and Mohit Bhoite’s circuit sculpture overview. You’ll also want to watch The State of the Hackaday address by Editor-in-Chief Mike Szczys. More talks will be added as they’re edited, so watch that space for developments.

One of the talks we missed – and video of which appears not to be posted yet – was Adam Zeloof’s talk on thermodynamic design for your circuits. While we wait for that, here’s an interesting part that might prove useful for your next high-power design. It’s a Thermal Jumper Chip, which is essentially a ceramic SMD component that can conduct heat but not electricity. It’s intended to be used where a TO-220 case needs to be electrically isolated but thermally connected to a heatsink. Manufacturer TT Electronics has a whole line of the chips in various sizes and specs, plus a lot of other cool components like percussive igniters.

We got an interesting tip this week about a new development in the world of 3D-printing. A group from Harvard demonstrated a multinozzle extruder that can print multimaterial objects in a single pass. The work is written up in a Nature article entitled “Voxelated soft matter via multimaterial multinozzle 3D printing”, which is unfortunately paywalled, but the abstract and supplementary videos are really interesting. This appears not to be a standard hot plastic extrusion process; rather, the extruder uses elastomeric inks that cure after they’re extruded. They manage some clever tricks, including a millipede-like, vacuum-powered soft robot extruded in one pass from both soft and rigid silicone elastomers. It’s genuinely interesting stuff, and watching the multimaterial extruder head switch materials at up to 50 times per second is mesmerizing.

People really seemed to get worked up over the transit of Mercury across the face of the Sun last week, and for good reason – astronomical alignments such as these which can be seen from Earth are rare indeed, and worth taking time to see. Not everyone was in the right place at the right time with the right gear to view the transit directly, though, which is why we were glad that Justin over at The Thought Emporium did a video on leveraging online assets for space-based observations. We’ve featured a ton of hacks using SDRs and the like to intercept data from weather satellites, and while those hacks are fun and you should totally try them, Justin points out that most of these streams are readily available for free over the Internet. Clouds, lightning, forest fires and Earth changes, and yes, even the state of the Sun can all be monitored from the web.

Speaking of changes, do you know what has changed in Unix over the last 50 years? For that matter, did you know that Unix turned 50 recently? Sean Haas did after reading this article in Advent of Computing, which he shared on the tipline. The article compares a modern Debian distro to documentation from 1971 that pre-dates Unix version 1; we assume the “Dennis_v1” folder in the doc’s URL refers to none other than Dennis Ritchie himself. It turns out that Unix is remarkably well-conserved over 50 years, at least in the userspace. File system navigation and shell commands are much the same, while programming was much different. C didn’t yet exist – Dennis was busy – but there were assemblers and linkers, plus a FORTRAN compiler and an interpreter for BASIC. It’s comforting to know that if you drop into a wormhole and end up sitting in front of a PDP-11 with Three Dog Night singing “Joy to the World” on the radio in the background, you’ll at least be able to look like you belong there.

And finally, it’s nearly Sparklecon time again. Sparklecon VII will be held on January 25 and 26, 2020, at the 23b Shop hackspace in Fullerton, California. We’ve covered previous Sparkelcons and we’ve even sponsored the meetup in the past, and it looks like a blast. The organizers have put out a Call for Proposals for talks and workshops, so if you’re in the mood for some mischief, get your application going. And be quick about it – the CFP closes on December 8.

No Filament Needed In This Direct Extrusion 3D-Printer

Ground plastic bits go in one end, finished 3D-prints come out the other. That’s the idea behind [HomoFaciens]’ latest build: a direct-extrusion 3D-printer. And like all of his builds, it’s made from scraps and bits most of us would throw out.

Pellet agitator is part of the extruder. All of this travels along with the print head.

Take the extrusion screw. Like the homemade rotary encoders [HomoFaciens] is known for, it appears at first glance that there’s no way it could work. An early version was just copper wire wrapped around a threaded rod inside a Teflon tube; turned by a stepper motor, the screw did a decent job of forcing finely ground PLA from a hopper into the hot end, itself just a simple aluminum block with holes drilled into it. That worked, albeit only with basically powdered PLA. Later versions of the extruder used a plain galvanized woodscrew soldered to the end of a threaded rod, which worked with chunkier plastic bits. Paddles stir up the granules in the hopper for an even flow into the extruder, and the video below shows impressive results. We also picked up a few tips, like using engine gasket paper and exhaust sealant to insulate a hot end. And the slip coupling, intended to retract the extruder screw slightly to reduce stringing, seems brilliant but needs more work to make it practical.

It’s far from perfect, but given the inputs it’s pretty amazing, and there’s something attractive about reusing all those failed prints. It reminds us a bit of the trash printer we featured recently, which is another way to stick it to the filament man. Continue reading “No Filament Needed In This Direct Extrusion 3D-Printer”

How To Make Your Own Springs For Extruded Rail T-Nuts

Open-Source Extruded Profile systems are a mature breed these days. With Openbuilds, Makerslide, and Openbeam, we’ve got plenty of systems to choose from; and Amazon and Alibaba are coming in strong with lots of generic interchangeable parts. These open-source framing systems have borrowed tricks from some decades-old industry players like Rexroth and 80/20. But from all they’ve gleaned, there’s still one trick they haven’t snagged yet: affordable springloaded T-nuts.

I’ve discussed a few tricks when working with these systems before, and Roger Cheng came up with a 3D printed technique for working with T-nuts. But today I’ll take another step and show you how to make our own springs for VSlot rail nuts.

Continue reading “How To Make Your Own Springs For Extruded Rail T-Nuts”

ABS: Three Plastics In One

It would be really hard to go through a typical day in the developed world without running across something made from ABS plastic. It’s literally all over the place, from toothbrush handles to refrigerator interiors to car dashboards to computer keyboards. Many houses are plumbed with pipes extruded from ABS, and it lives in rolls next to millions of 3D-printers, loved and hated by those who use and misuse it. And in the form of LEGO bricks, it lurks on carpets in the dark rooms of children around the world, ready to puncture the bare feet of their parents.

ABS is so ubiquitous that it makes sense to take a look at this material in terms of its chemistry and its properties. As we’ll see, ABS isn’t just a single plastic, but a mixture that takes the best properties of its components to create one of the most versatile plastics in the world.

Continue reading “ABS: Three Plastics In One”

Experimenting With Extruded Elements

Conventional 3D printing and other additive manufacturing methods are highly effective at producing parts of irregular geometries that are difficult or impossible to create with other methods. However, there is a whole set of compromises that come with it – material uniformity, strength, and size are just some that come to mind. There are, however, other techniques that can be used in conjunction with these technologies, and the use of so-called “extruded elements” may be one of them.

The idea is to break up large models into a series of smaller mutually interlocking pieces of an extruded form. This is done by importing an STL model into OpenSCAD and processing it with a special script. This script essentially intersects a matrix of extruded forms upon the original part geometry, allowing it to be printed as a series of seperate pieces that can later be assembled. The instructions are long and detailed, but are an accurate guide of how to create your own extruded element parts.

There are options to customise the process, allowing for filled and skeleton type extrusions and various ways of interlocking the parts. There are interesting implications for this technology, thanks to the benefits of interlocking parts. Particularly, it could have great benefits for the repair of damaged structures and for building objects that exceed the size of the build platform on a smaller 3D printer. The technique looks especially good for building up lightweight cores for big objects. [Toby] is working on a stand-up paddle board.

We look forward to seeing how this particular project develops. We’ve seen other techniques to build large printed structures, before, too – like this giant RC F1 car.

Camera Slide Pans And Tilts Camera Mechanically

A camera slider is a popular and simple project — just a linear slide, a stepper, and some sort of controller. Adding tilt and pan axes ups the complexity until you’ve got three motors, a controller, and probably a pretty beefy battery pack to run everything. Why not simplify with an entirely mechanical pan-tilt camera slider and leave all that heavy stuff at home?

There’s more than one way to program motion control, and [Enza3D]’s design uses adjustable rails to move the gimballed pan-tilt head through two axes of motion. One rail adjusts vertically to control tilt, while the other adjusts in and out relative to the slider to control pan. Arms ride on each rail and connect to the gimbals to swivel the camera in both dimensions while it travels down the manually cranked slide. It’s pretty clever and results in some clean, dynamic shots as in the video below.

Our quibble is that the “program” is only linear since the control rails are straight lengths of aluminum extrusion; seems to us that some sort of flexible control rails might make for more interesting shots. [Enza3D] has amply documented the build and is looking for feedback, so comment away. And if you don’t have a 3D printer to make the parts, wood works for a slider too.

Continue reading “Camera Slide Pans And Tilts Camera Mechanically”

Self-assembling Polymers Support Silicone 3D Prints

We all know what the ultimate goal of 3D printing is: to be able to print parts for everything, including our own bodies. To achieve that potential, we need better ways to print soft materials, and that means we need better ways to support prints while they’re in progress.

That’s the focus of an academic paper looking at printing silicone within oil-based microgels. Lead author [Christopher S. O’Bryan] and team from the Soft Matter Research Lab at the University of Florida Gainesville have developed a method using self-assembling polymers soaked in mineral oil as a matrix into which silicone elastomers can be printed. The technique takes advantage of granular microgels that are “jammed” into a solid despite being up to 95% solvent. Under stress, such as that exerted by the nozzle of a 3D printer, the solid unjams into a flowing liquid, allowing the printer to extrude silicone. The microgel instantly jams back into a solid again, supporting the silicone as it cures.

[O’Bryan] et al have used the technique to print a model trachea, a small manifold, and a pump with ball valves. There are Quicktime videos of the finished manifold and pump in action. While we’ve covered flexible printing options before, this technique is a step beyond and something we’re keen to see make it into the hobby printing market.

[LonC], thanks for the tip.