8-Track Tapes As A Storage Medium

OLYMPUS DIGITAL CAMERA

Before [Woz] created the elegant Disk II interface for the Apple II, and before Commodore brute-forced the creation of the C64 5 1/4″ drive, just about every home computer used cassette tapes for storage. Cassette tapes, mind you, not 8-track tapes. [Alec] thought this was a gross oversight of late 1970s engineers, so he built a 8-track tape drive.

This actually isn’t the first instance of using 8-tracks to store data on a computer. The Compucolor 8001 had a dual external 8-track drive, and the Exidy Sorcerer had a tape drive built in to the ‘the keyboard is the computer’ form factor. It should be noted that nearly no one has heard about these two computers – the Compucolor sold about 25 units, for example – so we’ll just let that be a testament to the success of 8-track tape drives.

[Alec] installed an 8-track drive inside an old external SCSI hard drive enclosure. Inside is an Arduino that controls the track select, tape insertion and end of tape signals. Data is encoded with DTMF with an FSK encoding, just like the proper cassette data tapes of the early days.

On the computer side of things, [Alec] is using a simple UNIX-style, pipe-based I/O. By encoding four bits on each track, he’s able to put an entire byte on two stereo tracks. The read/write speed is terribly slow – from the video after the break, we’re assuming [Alec] is running his tape drive right around 100 bits/second – much slower than actually typing in data. This is probably a problem with the 40-year-old 8-track tape he’s using, but as a proof of concept it’s not too bad.

[Read more...]

Hacking old server hardware for new home use

[Arnuschky] was looking for a network storage solution that included redundancy. He could have gone with a new NAS box, but didn’t want to shell out full price. Instead, he picked up a Dell PowerEdge 2800 and hacked it for SATA drives and quiet operation.

It’s not surprising that this hardware can be had second-hand at a low price. The backplane for it requires SCSI drives, and it’s cheaper to upgrade to new server hardware than it is to keep replacing those drives. This didn’t help out [Arnuschky's] any, so he started out by removing the SCSI connectors. While he was at it, he soldered wires to the HDD activity light pads on the PCB. These will be connected to the RAID controller for status indication. The image above shows the server with eight SATA drives installed (but no backplane); note that all of the power connectors in each column are chained together for a total of two drive power connectors. He then applied glue to each of these connectors, then screwed the backplane in place until the glue dried. Now the device has swappable SATA drives!

His server conversion spans several posts. The link at the top is a round-up so make sure you click through to see how he did the fan speed hack in addition to the SATA conversion.

If your tolerances don’t allow you to glue the connectors like this, check out this other hack that uses shims for spacing.

Adding a Compact Flash reader to a Korg Triton

[Roberto Barrios] has a Korg Triton sampling keyboard which he enjoys very much, but has grown tired of using media of yesteryear to store his work. He had the option of floppy disk or Jazz drive and for a time he was using a floppy-to-USB emulator, but the keyboard still insisted on a 1.44 Mb storage limit using that method. He decided to crack open the case and add his own CF reader.

It should be noted that this hack could have been avoided by using the 25-pin connector on the back of the keyboard. He didn’t want to have external hardware, which is understandable if you’re gigging–it’s just more equipment to keep track of. His solution uses the floppy disk drive opening to mount the card reader. His electrical connections are made with a ribbon cable. He cut off one end, and soldered the individual wires to the contacts on the motherboard. The reader is seen as a SCSI drive by the Korg firmware thanks to a SCSI-to-IDE adapter, so the storage limitation is based quite fittingly on the size of the CF card used.

Look at that cable management. You’d think it came straight from the factory like this!

Making SATA drives work with a SCSI backplane

The problem of persistent and reliable storage plagues us all. There are a myriad of solutions, some more expensive than others, but a dedicated and redundant network attached storage solution is hands down the best choice for all problems except natural disaster (ie: fire, flood, locusts) and physical theft. That being said, the issue of price-tag rears its ugly head if you try to traverse this route.

[Phil's] had his mind stuck on a very large NAS solution for the last ten years and finally found an economical option. He picked up a powerful motherboard being sold as surplus and a server enclosure that would play nicely with it. It came with a backplane for multiple hard drives that utilized SCSI connections. The cost and availability of these drives can’t compare to the SATA drives that are on the market. Realizing this, [Phil] completely reworked the backplane to make SATA connections possible. It’s an intense amount of work, but there’s also an intense amount of documentation of the process (thank you!). If doing this again his number one tip would be to buy a rework station to make it easier to depopulate the connectors and extraneous parts from the PCB. Since he needs to keep using the board, the old blow-torch trick is out of the question.

Adding Compact Flash to an old sequencer

[Shoji] has a beloved sequencer that went out of production ten years ago. Unfortunately the storage options are also 10 year out-of-date as SCSI is the stock option for storing his loops. Using a series of adapters he added Compact Flash storage to his Akai MPC-2000 Classic. The board has a connector for 25-pin SCSI which he wired to a 25-pin to 50-pin SCSI adapter. From there he connects a SCSI to IDE board, and then an IDE to CF. Subsequent versions of the Akai Classic have floppy drives in the front left corner so he used this method to mount he CF slot. Now he’s got plenty of storage with very little change to the appearance of the looper.