Adding PID Control To A Non-Adjustable Iron

Do remember your first soldering iron? We do. It plugged into the wall, and had no way to adjust the temperature. Most people call these kind of irons “fire starters.” Not only are they potentially unsafe (mainly because of the inadequate stand they come with) they can be hard to use, slow to heat up, and you never know what temperature you are soldering at.

[Mike Doughty] wondered if you could hack a cheap iron to be temperature controlled. He began by taking apart an iron, and adding a K-type thermocouple to the mica heating element with the help of a fiberglass sleeve. After a few tries at fitting and finding the right placement for the thermocouple, he then reassembled the iron, and attached everything to an off-the-shelf industrial PID controller.

Not one to trust that everything was working, [Mike] began to test the iron. He used a Hakko FG-100 soldering iron tip thermometer to measure the “real” temperature of tip, and compared it to the value the K-type thermocouple was reporting it to be. The results were fairly impressive (as seen in the video after the break). Only about 10 degrees out. Not too shabby.

He concluded that although it did work, it wasn’t a replacement for a high quality soldering station. We suspect the real problem with this idea is that the mica heating element is way to slow to respond to any thermal load that the tip is given (but then neither did the unmodified iron.) If you’re interested in hacking together your own soldering station, you might be interested in the open source soldering iron driver.

[via Dangerousprototypes]

Continue reading “Adding PID Control To A Non-Adjustable Iron”

Hackaday Retro Edition: TRS Wiki

1977 was a special year for computing history; this year saw the release of the 8085 following the release of the Z80 a year before. Three companies would launch their first true production computers in 1977: Apple released the Apple II, Commodore the PET 2001, and Tandy / Radio Shack the TRS-80 Model I. These were all incredibly limited machines, but at least one of them can still be used to browse Wikipedia.

[Pete]’s TRSWiki is a Wikipedia client for the TRS-80 Model I that is able to look up millions of articles in only uppercase characters, and low resolution (128×48) graphics. It’s doing this over Ethernet with a very cool Model I System Expander (MISE) that brings the lowly Trash-80 into the modern era.

The MISE is capable of booting from CF cards, driving an SVGA display and connecting to 10/100 Ethernet. Connecting to the Internet over Ethernet is one thing, but requesting and loading a web page is another thing entirely. There’s not much chance of large images or gigantic walls of text fitting in the TRS-80’s RAM, so [Pete] is using a proxy server on an Amazon Web Services box. This proxy is written in Java, but the code running on the TRS-80 is written entirely in Z80 assembly; not bad for [Pete]’s first project in Z80 assembly.


vt100normal The Hackaday Retro Edition is our celebration of old computers doing something modern, in most cases loading the old, no CSS or Javascript version of our site.

If you have an old computer you’d like featured, just load up the retro site, snap some pictures, have them developed, and send them in.

Retrotechtacular: Radar Jamming

It’s been said that the best defense is a good offense. When aloft and en route to deliver a harmful payload to the enemy, the best defense is to plan your approach and your exit carefully, and to interfere with their methods of detection. If they can’t find you, they can’t shoot you.

As of May 1962, the United States military was using three major classifications of radar jamming technology as described in this week’s film: the AN/ALQ-35 multiple target repeater, the AN/ALQ-55 communications link disrupter, and the AN/ALQ-41 and -51 track breakers. The most important role of these pieces of equipment is to buy time, a precious resource in all kinds of warfare.

The AN/ALQ-35 target repeater consists of a tuner, pulse generator, transmitter, and control panel working in concert to display multiple false positives on the enemy’s PPI scopes. The unit receives the incoming enemy pulse, amplifies it greatly, repeats it, and sends them back with random delays.

The AN/ALQ-55 comm disrupter operates in the 100-210MHz band. It distinguishes the threatening enemy communication bands from those of beacons and civilians, evaluates them, and jams them with a signal that’s non-continuous, which helps avoid detection.

Finally, the AN/ALQ-41 and -51 track breakers are designed to break enemy lock-on and to give false information. It provides simultaneous protection against pulse ranging, FM-CW, conical, and monopulse radar in different ways, based on each method’s angle and range.

Continue reading “Retrotechtacular: Radar Jamming”

DOTS Uses Paint To Control Raspberry Pi 2

Two tables down from us at SXSW Create the Raspberry Pi foundation had a steady stream of kids playing Minecraft on Raspberry Pi, and picking up paint brushes. The painting activity was driven by a board they spun for the event that used conductive paint to control the Raspberry Pi 2.

rear-of-the-raspberry-pi-2The board uses the HAT form factor which it a fancy name for a shield (also a clever one as it stands for “Hardware Attached on Top”). You can see the back side of the board in this image. It utilizes an extremely low-profile surface mount pin socket.

The front side exposes several circular pads of copper which build up a “connect-the-dots” game that is played by painting conductive ink on the surface. This results in an airplane being pained on the board, as well as displayed on the computer. There is a set of pads that allow the user to select what color is painted on the monitor.

We like this as a different approach to education. Kids are more than used to tapping on a touchscreen, clicking a mouse, or pounding a keyboard. But conductive ink provides several learning opportunities; the paint simply connects the inner circle with the outer circle; one of these circles is the same on every single dot (ground); anything that connects these two parts of the dot together will result in input for the computer. Great stuff!

The foundation is taking the boards to Maker Faire Bay Area next month so stop by to see these in action. You can read about the production process for the DOTS board on the Raspberry Pi website. They’re giving away a few boards to software developers who want contribute to the project. And our video interview with [Matt Richardson] is found after the break.

Continue reading “DOTS Uses Paint To Control Raspberry Pi 2”

Header of the Project Byzantium website

Meshing Pis With Project Byzantium

If internet service providers go down, how are we going to get our devices to communicate? Project Byzantium aims to create an “ad-hoc wireless mesh networking for the zombie apocalypse.” It’s a live Linux distribution that makes it easy to join a secure mesh network.

[B1tsh1fter] has put together a set of hardware for running Byzantium on Pis in emergency situations. A Raspberry Pi 2 acts as a mesh node, using a powerful USB WiFi adapter for networking. Options are provided for backup power, including a solar charger and a supercapacitor based solution.

The Pi runs a standard Raspbian install, but uses packages from the ByzPi repository. This provides a single script that gets a Byzantium node up and running on the Pi. In the background, OLSR is used to route packets through the mesh network, so that nodes can communicate without relying on a single link.

The project has a ways to go, but the Raspberry Pi based setup makes it cheap and easy to get a wide area network up and running without relying on a single authority.

Smart juggling balls

Smart Juggling Balls

For the 2015 Hack a Day Prize, [Arkadi] is working on an educational platform using the Arduino for Smart Juggling Balls.

His goal for this is to create an open-source platform which, beyond juggling, can be used to teach physics in both an interactive and fun way. The juggling balls feature a RGB LED, an Arduino pro mini, and some MPU’s. They can be programmed to change color based on acceleration, gravity, centripetal force, rotation, or even controlled remotely. As the project develops further, he also plans on creating lecture content to go alongside the project, which would make it an excellent and interactive project for a high school (or even college) tech or physics class.

It’s not completely done yet but he’s already posted all the source code and instructions for making your own set over on GitHub. Stick around after the break to see the prototype balls in action and don’t forget to get cracking on your own Hackaday Prize entry!

Continue reading “Smart Juggling Balls”

Italian Law Changed By The Hackaday Prize

A recent change in Italian law was spurred by the Hackaday Prize. The old law restricted non-Italian companies from hosting contests in the country. With the update Italian citizens are now welcome to compete for the 2015 Hackaday Prize which will award $500,000 in prizes.

We’ve heard very few complaints about the Hackaday Prize. When we do, it’s almost always because there are some countries excluded from participation. We’ve tried very hard to include as much of the globe as possible, some countries simply must be excluded due to local laws regarding contests. The folks from Make in Italy saw last year’s offer of a Trip into Space or $196,418 and set out to get the local laws changed (translated). Happily they succeeded!

The Make in Italy Foundation was started to encourage and support FabLabs in Italy. After seeing two major Hacker and Maker oriented contests — The 2014 Hackaday Prize and the Intel Make it Wearable contest — exclude Italian citizens from entering. Their two prong approach sought out legal counsel and started a petition on Change.org signed by about 1.8k supporters.

We’ve been holding off on the announcement as we needed our own legal opinion on the change (we’re not great at understanding Italian legal PDFs without some help). But today we have removed Italy from the list of excluded countries. Submit your entry today just by writing down your idea of a build which will solve a problem faced by a large number of people. Build something that matters and you could win a Trip into Space, $100,000 for the ‘Best Product’, or hundreds of other prizes. But we’re not waiting until the end, over the next 17 weeks we’ll be giving out $50k in prizes to hundreds of entries.

[Thanks Alessandro]


The 2015 Hackaday Prize is sponsored by: