Meta’s Ray-Ban Display Glasses And The New Glassholes

It’s becoming somewhat of a running gag that any device or object will be made ‘smart’ these days, whether it’s a phone, TV, refrigerator, home thermostat, headphones or glasses. This generally means somehow cramming a computer, display, camera and other components into the unsuspecting device, with the overarching goal of somehow making it more useful to the user and not impacting its basic functionality.

Although smart phones and smart TVs have been readily embraced, smart glasses have always been a bit of a tough sell. Part of the problem here is of course that most people do not generally wear glasses, between people whose vision does not require correction and those who wear e.g. contact lenses. This means that the market for smart glasses isn’t immediately obvious. Does it target people who wear glasses anyway, people who wear sunglasses a lot, or will this basically move a smart phone’s functionality to your face?

Smart glasses also raise many privacy concerns, as their cameras and microphones may be recording at any given time, which can be unnerving to people. When Google launched their Google Glass smart glasses, this led to the coining of the term ‘glasshole‘ for people who refuse to follow perceived proper smart glasses etiquette.

Continue reading “Meta’s Ray-Ban Display Glasses And The New Glassholes”

IPhone Air Still Apparently Repairable Despite Its Compact Construction

Miniaturization is a trend that comes and goes in the cellular phone space. For a while, our phones were all getting smaller, then they started getting bigger again as screens expanded to show us ever more content and advertising. The iPhone air is going back the other way, with a design that aims to sell based on its slimness. [iFixit] reckons that despite its diminutive dimensions, it should still be quite repairable.

“Thinner usually means flimsier, harder to fix, and more glued-down parts, but the iPhone Air proves otherwise,” states Elizabeth Chamberlain for the repair outlet. Much of this comes down to clever design, that makes repair possible at the same time as ensuring compactness. A big part of this is the way that Apple made the bottom half of the phone pretty much just battery. Most of the actual electronic components are on a logic board up by the camera. Segmenting the phone in this way makes it easier to access commonly-replaced parts like the battery without having to pull a lot of other parts out of the way first.

[iFixit] refers to this as flattening the “disassembly tree”—minimizing the number of components you have to touch to replace what you’re there to fix. In this regard, the thinness of the iPhone Air is actually a boon. The phone is so thin, it wasn’t possible to stack multiple components on top of each other, so everything is easier to get to. The design is also reasonably modular, which should make routine repairs like USB C port swaps relatively straightforward.

Whatever smartphone you’re working on, it often helps to have a disassembly guide to ensure you don’t wreck it when you’re trying to fix something. [iFixit] remains a stellar resource in that regard. Continue reading “IPhone Air Still Apparently Repairable Despite Its Compact Construction”

Restoring A Vintage Computer And Its Plotter

Repairing vintage computers is bread-and-butter for many of us around here. The machines themselves tend to be fairly fixable, assuming spare parts are available and there hasn’t been too much physical damage. Peripherals can be another matter, though. Since they interface with the real world they can have more esoteric problems that aren’t always solvable. [joekutz] was handed just such a device in the form of a CE-150 docking station for a Sharp PC1500 Pocket Computer, which has a plotter built in. Here’s his “tip” for getting plotters like these working again.

The first step here is to disassemble the original, dried out pens to scavenge a few of the parts. The outer case needs to be kept so that it can be put back into the plotter, and a small O-ring is saved as well. To replace the dried-out tips [joekutz] discards the original tips and replaces them with tips from a common ink pen, using shrink wrap tubing to help fit the pen’s tip into the original plotter cylinder. He also takes the ink from the pen to fill the plotter’s cartridge, completing the surgery on the multi-colored plotter and bringing it back to life.

Of course this build goes well beyond the plotter, including bringing the PC1500 back to life as well. There are a few other videos about this project covering that original restoration as well as demonstrating some of the quirks of how this computer is meant to be programmed. But we mostly focused on the plotter here since that is a little bit out of the ordinary, and we’re also sure that refilling ink cartridges of any sort gets under the skin of everyone at HP.

Continue reading “Restoring A Vintage Computer And Its Plotter”