Blinky LED Bike Bag

Bicycle riders can never be too visible: the more visible you are, the less chance there is someone will hit you. That’s the idea behind the Arduibag, a neat open-source project from [Michaël D’Auria] and [Stéphane De Graeve]. The project combines a joystick that mounts on the handlebars with a dot matrix LED display in a backpack. By moving the joystick, the user can indicate things such as that they are turning, stopping, say thank you or show a hazard triangle to warn of an accident.

The whole project is built from simple components, such as an Adafruit LED matrix and a Bluno (an Arduino-compatible board with built-in Bluetooth 4.0) combined with a big battery that drives the LED matrix. This connects to the joystick, which is in a 3D printed case that clips onto the handlebars for easy use. It looks like a fairly simple build, with the larger components being mounted on a board that fits into the backpack and holds everything in place. You then add a clear plastic cover to part of the backpack over the LED matrix, and you are ready to hit the road, hopefully without actually hitting the road.

Continue reading “Blinky LED Bike Bag”

Wall-E Goes Corporate, Offering Telepresence Service

I guess if you are going to build a robot to do something boring like telepresence, you might as well make it cute. That’s obviously what [Andrew Maurer] was thinking when he built a telepresence robot using a Wall-E toy. The result is kind of adorable: Wall-E is holding the 5-inch HDMI screen that shows the video, and can scoot around in true Pixar fashion under remote control.

It’s also a neat build on the inside, using a Raspberry Pi for the brains and an Adafruit MotorHat to control the motors. The original toy didn’t have motors, so he added a new RC gearbox and motors to drive the little fella around. Installed behind Wall-Es eye is a USB webcam. Running behind the scenes is a mumble server that does the audio, a copy of Chromium that shows the video, and an Apache server that feeds the captured video to the other end of the conversation. The whole thing is tied together by a few scripts that kick things off appropriately and allow the user to remotely control Wall-E. It’s a cute build, and hopefully Wall-E can still find his EVE while performing his new corporate duties.

[via reddit]

Overclocking The Raspberry Pi 3 For Tasty Speed Increases

Some people are never happy. [Jackenhack] got hold of a couple of shiny new Raspberry Pi 3s, and the first thing he did is to start overclocking them. Fortunately, he knows what he is doing, so none of the magic smoke escaped, but it seems not all Pis are happy with the process.

For one of the three seemingly identical Pi 3, adding heat sinks let him push the CPU from the native 1.2GHz up to 1.45GHz. That did involve a bit of overvolting (increasing the voltage to the CPU), but that can be easily done in software. He also experimented with adding heat sinks to the memory, then bumping up the speed of the memory to increase throughput. Again, he was able to make some impressive gains, bumping the speed up from the native 400 Mhz to 500 Mhz. Both of those are stable overclocks: he was able to run the system at 100% CPU load for an extended time, and has incorporated the overclocked Pi into his system that contributes to the NTP pool project.

However, when he tried the same overclock with the second of the Pi 3 victims test subjects, it failed due to the CPU overheating. So, it seems that there is a lot of variation in the individual bits of silicon on the Pi 3. Perhaps some liquid nitrogen would help? It did for an Arduino…

Simple Samsung NX Remote Shutter Release From USB Cable

Samsung makes some nice cameras, but they have fallen into the trap of building proprietary controllers. Their NX models, for instance, have a micro USB port rather than the more usual 2.5mm socket for triggering the camera remotely. What’s a hacker to do?

[Niels] did some poking around, and found that it is pretty easy to trigger these cameras remotely, because Samsung simply moved the standard connections for half-press and full press of the shutter onto the USB socket: ground D+ (pin 3) and the camera focuses, then ground D- (pin 2) and the shutter is triggered. In his Instructable, he covers how to build a simple remote from a micro USB cable and a couple of switches.

Don’t feel left out if you have another type of digital camera: there are plenty of ways to build a simple shutter release switch with a few simple parts, or ways to put a microcontroller in control for more sophisticated shoots.

Home-Made Solenoid Motor

Want to really understand how something works? Make one yourself. That’s the approach that Reddit user [Oskarbjo] took with this neat electric motor build. He made the whole thing from scratch, using an Arduino, 3D printing, and ample quantities of wire to create a solenoid motor. This transforms the linear force of a solenoid, where a magnet is moved by a magnetic field, into rotary force. It’s rather like an internal combustion engine, but driven by electricity instead of explosions. Hopefully.

[Oskarbjo]’s engine seems to work, including a rather neat mechanism to detect the rotation of the shaft and relay that back to the controller. He hasn’t posted much detail in the build process, unfortunately, but did say that “If you’d want to build something similar I can probably help you out a bit, but half the fun is coming up with your own solutions.” Amen to that. We’ve seen a few neat solenoid motor builds, but this one wins points for starting from scratch. There is an Instagram video of the motor running after the break.

Continue reading “Home-Made Solenoid Motor”

Solar-powered Weather Station Knows Which Way The Wind Blows

Bob Dylan may not have needed a weatherman to tell him when the wind blows, but the rest of us rely on weather forecasts. These, in turn, rely on data from weather stations, and [Vlad] decided that his old weather station was in need of an upgrade.

His station, which uploads live data to the Weather Underground, needed to be solar-powered, weather-proof and easy to install. He seems to have succeed admirably with this upgrade, which is built around an ATmega328 and the 433 MHz link from the old station. As part of the upgrade, he built a 3D-printed enclosure and installed all-new sensors on a home-made PCB that are more accurate than the old ones.

He looked into upgrading the wireless leg to WiFi, but found that the school’s WiFi had a login page that he couldn’t get around. So he re-used the old 433 MHz radio and connected the other end of the link to an old laptop on the wired network. Good enough, we say. Now how about a snazzy display to go along with it?

Swarm Of Robot Boats Coming To An Ocean Near You Soon

Planning a hostile takeover of your local swimming pool? This might help: [Dr Anders Lyhne Christensen] sent us a note about his work at the BioMachines Lab of the Institute of Telecommunications in Portugal. They have been building a swarm of robot boats to experiment with autonomous swarms, with some excellent results.

In an autonomous swarm, each robot makes its own decisions and talks to its neighbors, and the combined behavior of the swarm produces an overall behavior, like ants in a nest. They’ve created swarms that can autonomously navigate, patrol an area or monitor the temperature in an area and return to base to report the results. In an excellent video, [Anders] outlines how they used computational evolution to create these behaviors, randomly mutating a neural net to find the best approach, which is then sent to the real boats.

Perhaps coolest of all: the whole project is open source, with the brains of each boat running on a Raspberry Pi, and a CNC milled foam hull with 3D printed component mounts. Each boat costs about 300 Euro (about $340), but you could reduce the cost a bit by salvaging components and once the less-expensive Pi Zero becomes obtainable. This project will no doubt be useful for many an evil genius who is sick of being splashed by the toughs at the local pool: a swarm of killer robots surrounding them would be an excellent way to keep them at bay.

Continue reading “Swarm Of Robot Boats Coming To An Ocean Near You Soon”