Solar-powered Weather Station Knows Which Way The Wind Blows

Bob Dylan may not have needed a weatherman to tell him when the wind blows, but the rest of us rely on weather forecasts. These, in turn, rely on data from weather stations, and [Vlad] decided that his old weather station was in need of an upgrade.

His station, which uploads live data to the Weather Underground, needed to be solar-powered, weather-proof and easy to install. He seems to have succeed admirably with this upgrade, which is built around an ATmega328 and the 433 MHz link from the old station. As part of the upgrade, he built a 3D-printed enclosure and installed all-new sensors on a home-made PCB that are more accurate than the old ones.

He looked into upgrading the wireless leg to WiFi, but found that the school’s WiFi had a login page that he couldn’t get around. So he re-used the old 433 MHz radio and connected the other end of the link to an old laptop on the wired network. Good enough, we say. Now how about a snazzy display to go along with it?

Brain Waves Can Answer Spock’s (and VR’s) Toughest Question

In Star Trek IV: The Voyage Home, the usually unflappable Spock found himself stumped by one question: How do you feel? If researchers at the University of Memphis and IBM are correct, computers by Spock’s era might not have to ask. They’d know.

[Pouya Bashivan] and his colleagues used a relatively inexpensive EEG headset and machine learning techniques to determine if, with limited hardware, the computer could derive a subject’s mental state. This has several potential applications including adapting virtual reality avatars to match the user’s mood. A more practical application might be an alarm that alerts a drowsy driver.

Continue reading “Brain Waves Can Answer Spock’s (and VR’s) Toughest Question”

A Quadcopter Controlled By A Pi Zero

Flight controllers for quadcopters and other drones are incredible pieces of engineering. Not only do these boards keep an aircraft level, they do so while keeping the drone in one place, or reading a GPS sensor and flying it from waypoint to waypoint. The latest of these flight controllers is built on everyone’s favorite $5 computer, the Raspberry Pi Zero.

The PXFmini controller and autopilot shield is the latest project from Erle Robotics that puts eight servo outputs on the Pi, barometer and IMU sensors, a power supply, and all the adapters to turn the Raspberry Pi Zero into a capable flight controller. Since the Pi Zero will have some computational horsepower left over after keeping a quadcopter level, there’s a possibility of some very cool peripherals. Erle Robotics has been working with depth cameras and Lidar on more than a few drones. This makes for some interesting applications we can only imagine now.

The schematics for the PXFmini are open source in the best traditions of the RC and drone community and will be available soon. You can check out a video of the FXPmini flying around an office below.

Continue reading “A Quadcopter Controlled By A Pi Zero”

Repairing And Improving Cheap Bench Power Supplies

Cheap benchtop power supplies are generally regarded as pieces of junk around these parts. They can measure well enough under perfect conditions, but when you use them a little bit, they fall over. There’s proof of this in hundreds of EEVblog posts, Amazon reviews, and stories from people who have actually owned these el-cheapo power supplies.

One of the guys who has had a difficult time with these power supplies is [Richard]. He picked up a MPJA 9616PS (or Circuit Specialists CSI3003SM) for a song. It quickly broke, and that means it’s time for a repair video. [Richard] is doing this one better – he has the 3A power supply, that sells for $55. With a stupidly simple modification, he upgraded this power supply to the 5A model that usually sells for $100.

The problem with [Richard]’s broken power supply were voltage and current adjustments knobs. This cheap power supply didn’t use rotary encoders – voltage and current were controlled by a pair of 1k and 10k pots. Replacing these parts cost about $5, and [Richard]’s power supply was back up on its feet.

After poking around inside this power supply, [Richard] noticed two blue trim pots. These trim pots were cranked all the way to the left, and by cranking them all the way to the right, the power supply could output 5 Amps. Yes, the 3A version of this power supply was almost identical to the 5A version, with the only difference being the price. It’s a good repair to a somewhat crappy but serviceable supply, but a great mod that puts a beefier power supply on [Richard]’s desk.

Continue reading “Repairing And Improving Cheap Bench Power Supplies”

How I Embraced My Introvert And Joined The Hacker Community

For some people to join a new group is an exciting proposal, to meet new people and interact with them to accomplish a goal is their idea of a good time. If this describes you then you’re all set to jump in there and make some new friends! There are other people who see social interaction as not such a good time. They would rather avoid that situation and go on about their normal day, I get it. In general my level of comfort is inversely proportional to the number of people with me. This is not a character trait that I chose, I’m an introvert by nature.

The stereotype depicts hackers, nerds, or geeks as people without many friends who spend most of our time alone or you might just call us “loners”. I should make it clear that I’m writing this article from a table for 1 at my local diner and it would be out of the ordinary if there was another person at this table with me. Just in case someone feels the need to speak to me I’m wearing headphones as a deterrent, audio delivery is not their use at this time (headphone hack). I can feel the first comment brewing so let me nip that in the bud real quick: I’m in a restaurant AND actively being alone because there are often too many distractions at home to get things done in a timely manner. And I like the pancakes.

Before I climb up on this soapbox let me say that many of you are already involved in the community and are doing a great job, in fact I’m pretty sure many of the old-timers I talk about are Hackaday readers. This article is a result of my self reflection regarding my lack of community involvement as of late. I can’t think of any reasons why I shouldn’t take myself down a peg or two publicly, enjoy.

I won’t bother with the “Ra-Ra! Team Spirit!” garbage to get you all jazzed up to be a part of the team. But I will tell you what you’re missing out on by not being active and participating. It’s similar to the saying “You can lead a horse to water but you can’t make that horse join a group of like-minded horses that would all benefit from a wealth of horse-knowledge.” The saying changes depending on where you’re from, that’s how it was told to me.

Continue reading “How I Embraced My Introvert And Joined The Hacker Community”

New Shape-Shifting Polymer Works Hard, Plays Hard

A research group at the University of Rochester has developed a new polymer with some amazing traits. It can be stretched or manipulated into new shapes, and it will hold that shape until heat is applied. Shape-shifting polymers like this already exist, but this one is special: it can go back to its original shape when triggered by the heat of a human body. Oh, and it can also lift objects up to 1000 times its mass.

The group’s leader, chemical engineering professor [Mitch Anthamatten], is excited by the possibilities of this creation. When the material is stretched, strain is induced which deforms the chains and triggers crystallization. This crystallization is what makes it retain the new shape. Once heat is applied, the crystals are broken and the polymer returns to its original shape. These properties imply several biomedical applications like sutures and artificial skin. It could also be used for tailored-fit clothing or wearable technology.

The shape-shifting process creates elastic energy in the polymer, which means that it can do work while it springs back to normal. Careful application of molecular linkers made it possible for the group to dial in the so-called melting point at which the crystallization begins to break down. [Anthamatten] explains the special attributes of the material in one of the videos after the break. Another video shows examples of some of the work-related applications for the polymer—a stretched out strand can pull a toy truck up an incline or crush a dried seed pod.

Continue reading “New Shape-Shifting Polymer Works Hard, Plays Hard”

Where Are All The Camless Engines?

Electric cars are all the rage lately, but let’s not forget about the old standby – internal combustion. The modern internal combustion engine is a marvel of engineering. Today’s engines and surrounding systems have better power, greater fuel economy, and lower emissions than anything that has come before. Centuries’ worth of engineering hours have gone into improving every aspect of the engine – with one notable exception. No automotive manufacturer has been able to eliminate the engine’s camshaft in a piston powered-production vehicle. The irony here is that camless engines are relatively easy to build. The average hacker could modify a small four-stroke engine for camless operation in their workshop. While it wouldn’t be a practical device, it would be a great test bed for experimentation and learning.

Suck, Squeeze, Bang, Blow

dohcA multi-cylinder gasoline engine is a complex dance. Hundreds of parts must move in synchronicity. Valves open and close, injectors mist fuel, spark plugs fire, and pistons move up and down. All follow the four-stroke “Intake, Compression, Combustion, Exhaust” Otto cycle. The camshaft controls much of this by opening and closing the engine’s spring-loaded intake and exhaust valves. Lobes on the shaft press on tappets which then move the valve stems and the valves themselves. The camshaft itself is driven at half the speed of the crankshaft through timing gears, chains, or a belt. Some valve trains are relatively simple – such as overhead cam engines. Others, such as the cam-in-block design, are more complex, with pushrods, rockers, and other parts required to translate the movement of the cam lobe to movement at the valve.

Exactly when, and how fast a valve opens is determined by the profile of the cam lobe. Auto racing and performance enthusiasts often change camshafts to those with more aggressive profiles and different timing offsets depending on the engine’s requirements. Everything comes at a cost though. A camshaft machined for maximum power generally won’t idle well and will make the engine harder to start. Too aggressive a lobe profile can lead to valve float, where the valves never fully seat at high RPM.

Myriad Solutions

vanosEngine manufacturers have spent years working around the limitations of the camshaft. The results are myriad proprietary solutions. Honda has VTEC, short for Variable Valve Timing and Lift Electronic Control. Toyota has VVT-i. BMW has VANOS, Ford has VCT. All these systems provide ways to adjust the valve action to some degree. VANOS works by allowing the camshaft to slightly rotate a few degrees relative to its normal timing, similar to moving a tooth or two on the timing chain. While these systems do work, they tend to be mechanically complex, and expensive to repair.

The simple solution would be to go with a camless engine. This would mean eliminating the camshaft, timing belt, and most of the associated hardware. Solenoids or hydraulic actuators open and close the valves in an infinitely variable number of ways. Valves can even be held open indefinitely, effectively shutting down a cylinder when max power isn’t necessary.

So why aren’t we all driving camless engines? There are a few reasons. The advantages of camless engines to camshaft engines are analogous to the advantages of electronic fuel injection (EFI) vs carburetors. At the core, a fuel injector is a solenoid controlled valve. The fuel pump provides constant pressure. The engine control unit (ECU) fires the injectors at just the right time to inject fuel into the cylinders.The computer also leaves the valves open long enough so that the right amount of fuel is injected for the current throttle position. Electronically this is very similar to what would be required for a camless engine. So what gives?

22R-e, an early EFI engine
Toyota’s celebrated 22R-E, an early EFI engine

Hackers in their 30’s and beyond will remember that until the late 1970’s and early 1980’s, the carburetor was king. Companies had been experimenting with EFI since the 1950’s. The system didn’t become mainstream until the stiff pollution laws of the 70’s came into effect. Making a clean, fuel-efficient carbureted engine was possible, but there were so many mechanical and electronic actuators required that the EFI was a better alternative. So the laws of the 70’s effectively regulated carburetors out of existence. We’re looking at much the same thing with camless engines. What’s missing are the regulations to force the issue.

All the big manufacturers have experimented with the camless concept. The best effort to date has been from Freevalve, a subsidiary of Koenigsegg. They have a prototype engine running in a Saab. LaunchPoint Technologies have uploaded videos showing some impressive actuator designs LaunchPoint is working with voice coils, the same technology which moves the heads in your hard drive.
None of this means that you can’t have a camless engine now – companies like Wärtsilä and Man have engines commercially available. However, these are giant diesel engines used to drive large ships or generate power. Not exactly what you’d want to put in a your subcompact car! For the hacker set, the best way to get your hands on a camless engine today is to hack one yourself.

Ladies and gentlemen, start hack your engines!

cam1Simple, single-cylinder camless engines are relatively easy to build. Start with a four stroke overhead valve engine from a snowblower, scooter, or the like. Make sure the engine is a non-interference model. This means that it is physically impossible for the valves to crash into the pistons. Add a power source and some solenoids. From there it’s just a matter of creating a control system. Examples are all over the internet. [Sukhjit Singh Banga] built this engine as part of a college project. The control system is a mechanical wheel with electric contacts, similar to a distributor cap and rotor system. [bbaldwin1987’s] Camless Engine Capstone project at West Virginia University uses a microcontroller to operate the solenoids. Note that this project uses two solenoids – one to open and one to close the valve. The engine doesn’t need to rely on a spring for closure. [Brian Miller] also built a camless engine for college, in this case Brigham Young University Idaho Camless Engine. [Brian’s] engine uses hall effect sensors on the original camshaft to fire the solenoids. This route is an excellent stepping stone before making the jump to full electronic control.

It wouldn’t take much work to expand these projects to a multi-cylinder engine. All we’re waiting for is the right hacker to take up the challenge!