The WiFi Phone That Respects Your Right To Repair

Phones are getting increasingly more complex, more difficult to repair, and phone manufacturers don’t like you tinkering with their stuff. It’s a portable version of a John Deere tractor in your pocket, and Apple doesn’t want you replacing a battery by yourself. What if there was a phone that respected your freedom? That’s the idea behind the WiPhone, and soon it’s going to be be a crowdfunding campaign. Yes, you will soon be able to buy a phone that respects your freedom.

We took a look at the WiPhone a few months ago, and the idea was solid: make a simple, cheap, handheld device based on the ESP32 WiFi/Bluetooth wonder microcontroller. There are a few other various bits of electronic ephemera for scanning the buttons, an audio codec, and a speaker driver, but the basics of the build are just an LCD and ESP32. The entire idea of this phone is to make calls through WiFi, and given the state of VoIP, it’s a marketable product.

Astute readers may notice that the WiPhone doesn’t have a cellular modem. Yes, this is true, but putting a baseband in a small, low-volume project is incredibly hard. You’re limited to 2G if you don’t want to deal with Broadcom or Qualcomm, and they’re not going to be interested in you if you’re not moving a hundred thousand units, anyway. Also, you’ve got service plans to deal with, multi-country radios, and you’re probably next to a trusted WiFi network right now, anyway.

The WiPhone is designed to be hackable, with daughter boards that turn it into a rainbow or RC car, and easy to assemble. It’s also going to be a crowdfunding campaign at the end of the month. If you want a phone that respects your right to repair, this is the project to look at, even if you don’t need a cellular modem all the time.

The Design And Construction Of A Tribute To A Bomber Pilot

Decades ago, [wilmracer]’s grandfather was piloting a B-17 over the Rhine, and as it goes, aviation runs in families. Now, more than 70 years later [wilmracer] is deep, deep into remote controlled aircraft, and he’s building an exacting scale model of the B-17G his grandfather flew on his last bombing mission over Europe.

This is a scratch build, with the design taken directly from the plans and schematics of a B-17. [wilmracer] has already paid the money to go up in the preserved B-17 Aluminum Overcast to get a better idea of the layout, and now he’s deep into cutting foam and bending balsa sheets. The first part of the build was arguably the hardest, and the main landing gear was expertly constructed out of aluminum tube and linear servos. The horizontal stab follows traditional building techniques of foam and carefully sanded balsa sheets. The fuselage is impressive, with the formers built out of foam, and eventually covered in 1/16″ balsa and wrapped in fiberglass.

If you’re going to do a large-scale model airplane, that also means you’ve got to do detailing. That means steam gauges rendered in 3D printed parts. [wilmracer] is modeling the cockpit and the machine guns in 1:9 scale. This is going to be an awesome build, and yes, there will eventually be plans.

Of course, this isn’t the biggest small B-17 ever built. That record goes to the 1:3 scale Bally Bomber, a real, not remote controlled plane built over the course of two decades by [ Jack Bally]. This is a real plane with a 34 foot wingspan that weighs 1800 pounds. Yes, it flies, and it went to Oshkosh last summer. Remote control really is the way to go with something like this, though: you can appease the rivet counters, put more power on the props, and you don’t need to worry too much about pesky things like regulations and laws. We’re looking forward to see where this project goes, and to the sound of a great PLA overcast thundering over the treetops.

Hardware Developers Didactic Galactic Call For Talks

Hackaday is known for having the best community around, and we prove this all the time. Every month, we hold meetups across the United States. This, in addition to conferences and mini-cons across the globe mean Hackaday is the premiere venue for technical talks on a wide variety of hardware creation. Everything from Design for Manufacturing, to the implementation of blinky bling is an open topic.

Now, we’re looking for the talk you can give. The Hardware Developers Didactic Galactic is a monthly gathering hosted by Supplyframe, the Overlords of Hackaday. It’s filled with the technical elite of San Francisco, usually held on the last Thursday of the month. We’re looking for a talk you can give, whether it’s about your IoT irrigation system, or that time you created something out of transistors and capacitors.  We’re looking for speakers for all of 2019, and if you have a tale of the trials and tribulations of injection molding or Bluetooth pairing, we want to hear from you.

We have a sign-up form for presenters, and if you have something to present to a group of fantastic, technical people, we want to hear from you. All these talks are streamed and recorded, so if you’d like an idea of what we’re going for, just check out some of the previous talks. We have talks on how to start a decentralized space agency, wearable technology and fashion, optics and FPGAs, and System-in-Package tech. We’ve got a speaker travel stipend of up to $300, so there’s no excuse for you not to present your latest work.

There are thousands of people in the Hackaday community that have tons to contribute, and this is your chance. You are the best of the best, and we want to hear what you have to teach the rest of the community.

Tesla Eyes Ultracapacitor Future With Maxwell Acquisition

As reported by Bloomberg, Tesla has acquired the innovative energy storage company Maxwell Technologies for $218 Million. The move is a direct departure from Tesla’s current energy storage requirements; instead of relying on lithium battery technology, this acquisition could signal a change to capacitor technology.

The key selling point of capacitors, either of the super- or ultra- variety, is the much shorter charge and discharge rates. Where a supercapacitor can be used to weld metal by simply shorting the terminals (don’t do that, by the way), battery technology hasn’t yet caught up. You can only charge batteries at a specific rate, and you can only discharge them at a specific rate. The acquisition of an ultracapacitor manufacturer opens the possibility of these powerhouses finding their way into electric vehicles.

While there is a single problem with super- and ultra-capacitors — the sheer volume and the fact that a module of ultracaps will hold much less energy than a module of batteries of the same size — the best guess is that Tesla won’t be replacing all their batteries with caps in the short-term. Analysts think that future Teslas may feature a ‘co-battery’ of sorts, allowing for fast charging and discharging through a series of ultracapacitors, with the main energy storage in the car still being the lithium battery modules. This will be especially useful for regenerative braking, as slowing down a three thousand pound vehicle produces a lot of energy, and Tesla’s current battery technology can’t soak all of it up.

How One Company Cracked The GameCube Disc Protection

The Nintendo GameCube was the first console from Big N with disc-based media. Gone were the cartridges that were absurdly expensive to manufacture. In theory games could be cheaper (yeah, right), and would hold more textures, pictures, and video. Around the time the GameCube hit shelves, your basic home computer started getting DVD burners, and you could walk into Circuit City and buy those tiny little DVD-Rs. But you couldn’t do it. You couldn’t burn GameCube games, at least without advanced soldering skills.

One company did. Datel, a British company that produced the Action Replay, the ‘Game Genie of the GameCube’ figured out how to get around the GameCube’s disc protection. Not only that, but in a decade and a half since the Action Replay came to market, no one has managed to copy their methods. In a fascinating video, [Nathan] takes us around the disc to see how this disc protection scheme actually worked, and how to exploit it to load homebrew games from an SD card.

The Nintendo GameCube disc format is almost, but not quite, the same as a DVD format. On (nearly) every DVD, and almost every GameCube disc, there’s a ‘barcode’ of sorts on the inside of the optical tracks. This burst cutting area (BCA) is unique to every copy that comes off a single master. Additionally, this BCA can only be cut with a YAG laser that’s significantly more powerful than the laser diode in a DVD writer.

But the Action Replay disc from Datel didn’t have this BCA. Why not? The BCA effectively writes over the pits and lands in the first blocks of data in a DVD. Since the BCA is written over data that is already there, you can just encode whatever data the BCA should hold into the raw data of the pits and lands. It’s a brilliant technique that allows consumer equipment to create the Action Replay disc. But surprisingly, this technique wasn’t popularized with the GameCube homebrew scene.

Not that it really mattered, anyway; modchips existed, and with the SD to Memory Card adapter you could run homebrew works without having to burn a disc. That’s exactly what [Nathan] did with his GameCube setup, you can check out the video below.

Continue reading “How One Company Cracked The GameCube Disc Protection”

OpenISA Launches Free RISC-V VEGAboard

RISC architecture is gonna change everything, and I still can’t tell if we like that movie ironically or not. Nevertheless, RISC-V chips are coming onto the market, chipmakers seem really interested in not paying licensing fees, and new hard drives are shipping with RISC-V cores. The latest development in Open instruction sets chips comes from OpenISA. They’ve developed the VEGAboard, a dev board with two RISC-V chips and Arduino-style pin headers.

The VEGAboard comes loaded with an NXP chip which combines an ARM Cortex-M0 and Cortex-M4. So far, so good, but there are already dozens of boards that combine two ARM microcontrollers on a single development platform. The real trick is the RI5CY and Zero-RI5CY chips on the VEGAboard, a 4-stage RISC-V RV32IMCCXpulp CPU. This comes from the PULP platform, meant to be a small, low-power, but parallel platform for various processing needs. In short, with the VEGAboard, you’re not running a blink() sketch on the RISC-V microcontroller. You run the blink() sketch on the ARM microcontrollers, while using the RISC-V chip to read accelerometers and toggle pins. It’s a coprocessor, but it’s RISC-V.

Other features of the VEGAboard include 4MB of Flash, a light sensor, accelerometer, magnetometer, an RGB LED, OpenSDA serial debug adapter, an on-board BLE radio, and of course those wonky Arduino pin headers.

There are, or were, free VEGAboards available, but those are long gone. It’s still an interesting platform, though, and if you’d like to get your hands on one, production will resume shortly. Of course, if you need RISC-V right now, there are actual RISC-V Arduinos, a RISC-V with built-in neural networks, and SiFive will soon have a Linux-capable RISC-V multicore board. These are exciting times, and every day we’re seeing how RISC architecture is gonna change everything.

Recycled Piano Becomes Upcycled Workbench

Pianos are free, in case you’re not hip to the exciting world of musical instrument salvage. Yes, the home piano, once the pinnacle of upper middle class appreciation of the arts, is no longer. The piano your great aunt bought in 1963 is just taking up space, and it’s not like the guy on Craigslist giving away a free piano has a Bösendorfer.

It’s out of this reality of a surplus of cheap used pianos that [luke] built a new desk. He got it a while ago, but after getting it into his house, he realized it was too old to be tuned anymore. Or at least it was uneconomical to do so. This piano became a workbench, but after a while [luke] wanted something with a little more storage.

The process of converting this piano to a desk began with taking a few photos and putting them into Fusion 360. A series of panels and brackets were modeled in box jointed plywood, and the entire thing was cut out of 6mm Baltic birch plywood at the Vancouver Hack Space.

There are a few nice features that make this desk a little better than an Ikea special. There’s a Raspberry Pi mounted to the shelves, because the Pi still makes a great workbench computer. There’s a power supply, and hookups for 12 V, 5 V, and 3.3 V from an ATX power supply. This is controlled with an awesome antique power switch mounted to the side of the piano. Slap a few coats of black paint on that, and [luke] has an awesome, functional workbench that also has out-of-tune sympathetic strings. Not bad.

You can check out the entire build video below. Thanks [Jarrett] for sending this one in.

Continue reading “Recycled Piano Becomes Upcycled Workbench”