This Piano Does Not Exist

A couple of decades ago one of *the* smartphone accessories to have was a Bluetooth keyboard which projected the keymap onto a table surface where letters could be typed in a virtual space. If we’re honest, we remember them as not being very good. But that hasn’t stopped the idea from resurfacing from time to time.

We’re reminded of it by [Mayuresh1611]’s paper piano, in which a virtual piano keyboard is watched over by a webcam to detect the player’s fingers such that the correct note from a range of MP3 files is delivered.

The README is frustratingly light on details other than setup, but a dive into the requirements reveals OpenCV as expected, and TensorFlow. It seems there’s a training step before a would-be virtual virtuoso can tinkle on the non-existent ivories, but the demo shows that there’s something playable in there. We like the idea, and wonder whether it could also be applied to other instruments such as percussion. A table as a drum kit would surely be just as much fun.

This certainly isn’t the first touch piano we’ve featured, but we think it may be the only one using OpenCV. A previous one used more conventional capacitive sensors.

The Trans-Harmonium Is A Strange Kind Of Radio-Musical Instrument

Pianos use little hammers striking taut strings to make tones. The Mellotron used lots of individual tape mechanisms. Meanwhile, the Trans-Harmonium from [Emily Francisco] uses an altogether more curious method of generating sound — each key on this keyboard instrument turns on a functional clock radio.

Electrically, there’s not a whole lot going on. The clock radios have their speaker lines cut, which are then rejoined by pressing their relevant key on the keyboard. As per [Emily]’s instructions for displaying the piece, it’s intended that the radio corresponding to C be tuned in to a local classical station. Keys A, B, D, E, F, and G are then to be tuned to other local stations, while the sharps and flats are to be tuned to the spaces in between, providing a dodgy mix of static and almost-there music and conversation.

It’s an interesting art piece that, no matter how well you play it, will probably not net you a Grammy Award. That would be missing the point, though, as it’s more a piece about “Collecting Fragments of Time,” a broader art project of which this piece is a part.

We do love a good art piece, especially those that repurpose old hardware to great aesthetic achievement.

Continue reading “The Trans-Harmonium Is A Strange Kind Of Radio-Musical Instrument”

Robot Pianist Runs On Arduino Nano

The piano has been around for a long time now. Not long after its invention, humans started contemplating how they could avoid playing it by getting a machine to do the job instead. [vicenzobit] is the latest to take on this task, building a “Robot Pianista” that uses a simple mechanism to play a tune under electronic command (Spanish language, Google Translate link).

An Arduino Nano is the heart of the build, paired with a shield that lets it run a number of servo motors. The servos, one per key, are each assembled into a 3D-printed bracket with a cam-driven rod assembly. When the servo turns, the cam turns, and pushes down a rod that presses the piano key.

The build is limited in the sense that you can only play as many keys as you have servo channels, but nonetheless, it does the job. With eight servos, it’s able to play a decent rendition of Ode to Joy at a steady tempo, and that’s an excellent start.

We’ve featured some great mechanized instruments before, too. Video after the break.

Continue reading “Robot Pianist Runs On Arduino Nano”

RoboPianist Is A Simulation For Advancing Robotic Control

Researchers at Google have posed themselves an interesting problem to solve: mastering the piano. However, they’re not trying to teach themselves, but a pair of simulated anthropomorphic robotic hands instead. Enter RoboPianist.

The hope is that the RoboPianist platform can help benchmark “high-dimensional control, targeted at testing high spatial and temporal precision, coordination, and planning, all with an underactuated system frequently making-and-breaking contacts.”

If that all sounds like a bit much to follow, the basic gist is that playing the piano takes a ton of coordination and control. Doing it in a musical way requires both high speed and perfect timing, further upping the challenge. The team hopes that by developing control strategies that can master the piano, they will more broadly learn about techniques useful for two-handed, multi-fingered control. To that end, RoboPianist models a pair of robot hands with 22 actuators each, or 44 in total. Much like human hands, the robot hands are underactuated by design, meaning they have less actuators than their total degrees of freedom.

Continue reading “RoboPianist Is A Simulation For Advancing Robotic Control”

Tiny PCB PiezoPiano Plays Just One Octave

Grand pianos are beautiful instruments, but take up altogether too much space. Upright pianos are smaller, but still fairly hefty. When it comes to the PiezoPiano, though, we suspect nobody could complain about its diminutive size. It’s a tiny thing with just one buzzy little octave for your playing pleasure.

The PiezoPiano is a single PCB device with a ATmega4809 running the show. It has eight buttons and eight piezo transducers that give you just one octave’s range on the keyboard. Truth be told, that’s only in one scale; you’re not getting the whole twelve tones of flats and sharps included. And, when we say keyboard, we really mean “tactile buttons.” You get the drift. It’s all assembled in a cute enclosure mimicking the shape of a real grand piano.

Fundamentally, it’s a cute little musical desktoy that reminds us greatly of the Stylophone. Impressively, though, those eight buzzers mean it has eight-note polyphony. That’s nothing to sniff at compared to all the monophonic synths out there. It’s also available on Tindie if you’d like to buy a kit off the shelf. Video after the break.

Continue reading “Tiny PCB PiezoPiano Plays Just One Octave”

Here’s What It Takes To Fill A Piano With Water

Filling a piano with water probably sounds frivolous and asinine to many. However, it also sparks a certain curiosity as to what it would be like. Thankfully, [Mattias] put in the hours of work to find out so we don’t have to!

It doesn’t make a great pool, though.

A first attempt with an upright piano failed quickly. After just four minutes submerged in water, the wooden hammers would seize up as they swelled with moisture.

A grand piano was sourced for a second attempt. The strings were first detensioned to make things easier to work with, and the internal frame pried out from the surrounding piano body. To stop the water pouring out past the keys and strings, a simple solution was implemented: tilting the piano up so the water remained in the body below. A judicious application of various sealing agents was then used to seal the frame. Amazingly, the best information on sealing a piano came from enthusiasts building aquariums out of plywood boxes. Go figure.

The water has a muting effect on the piano’s sound as you might expect. The sound is particularly compelling when heard via underwater mics placed in the water-filled cavity. It almost sounds like a plucked instrument, and gives everything a strangely maritime feel. The sound waves can be seen on the surface of the water, too.

The experiment came to a tragic end when the piano was overfilled, dumping water over the keys and hammers. This caused every key to jam, killing the piano for good.

It’s a fun build, and a very silly one, if you can stand to watch a piano treated in this way. [Mattias] has form in the area of oddball instrument hacks, too, as we’ve previously featured his helium guitar. Video after the break.

Continue reading “Here’s What It Takes To Fill A Piano With Water”

A Kurzweil K2500 piano

Patching The Kurzweil K2500 Synthesizer

Despite being a computer with some extra chips, synthesizers today are still quite expensive. They used to cost far more, but we tend to think of them as instruments instead of computers. And just because it is an instrument doesn’t mean someone like [Peter Sobot] can’t crack it open and patch the OS inside.

The synth in question is a Kurzweil K2500, released in 1996 with a Motorola 68000. Rather than directly start pulling out parts on the kitchen table, [Peter] began by doing some online research. The K2500 operating system is still available online, and a quick pass through Ghidra showed some proper instructions, meaning the file likely wasn’t encrypted.

He found the part of the code that reads in a new firmware file and checks the header and checksum. Certain functions were very high in memory, and a quick consultation of the service manual yielded an answer: it was the volatile RAM. With that tidbit, [Peter] was able to find the function that copied chunks of the new ROM file to RAM and start decoding the file correctly. [Peter] changed a few strings, made sure the checksums were correct, and he was ready to flash. The actual tweaks that [Peter] are made are left up to the reader, but the techniques to get a working decompiled build and a viable ROM image to flash apply to many projects. One benefit is now the K2000 simulates correctly in MAME due to his spelunking. He has his flashing script up on GitHub for the curious.

Ghidra is perfect for this kind of thing. We’ve seen people tweaking their water coolers with it. It opens to door towards tweaking anything to your liking.