Hackaday Links: Remember, Remember

Buckle up, buttercup because this is the last weekly Hackaday Links post you’re getting for two weeks. Why? We have a thing next weekend. The Hackaday Superconference is November 11th and 12th (and also the 10th, because there’s a pre-game party), and it’s going to be the best hardware con you’ve ever seen. Don’t have a ticket? Too bad! But we’ll have something for our Internet denizens too.

So, you’re not going to the Hackaday Supercon but you’d like to hang out with like-minded people? GOOD NEWS! Barnes & Noble is having their third annual Mini Maker Faire on November 11th and 12th. Which Barnes & Noble? A lot of them. Our reports tell us this tends to be geared more towards the younger kids, but there are some cool people doing demonstrations. Worst case scenario? You can pick up a copy of 2600.

PoC || GTFO 0x16 is out! Pastor Laphroaig Races The Runtime Relinker And Other True Tales Of Cleverness And Craft! This PDF is a Shell Script That Runs a Python Webserver That Serves a Scala-Based JavaScript Compiler With an HTML5 Hex Viewer; or, Reverse Engineer Your Own Damn Polyglot.

In, ‘Oh, wow, this is going to be stupid’ news, I received an interesting product announcement this week. It’s a USB C power bank with an integrated hand warmer. Just think: you can recharge your phone on the go, warm your hands in the dead of winter, and hope your random battery pack from China doesn’t explode in your pocket. I’m not linking to this because it’s that dumb.

You can now cross-compile ARM with GCC in Visual Studio.

The iPhone X is out, and that means two things. There are far too many YouTube videos of people waiting in line for a phone (and not the good kind), and iFixit did a teardown. This thing is glorious. There are two batteries and a crazy double-milled PCB stack with strange and weird mezzanine connectors. The main board for the iPhone X is completely unrepairable, but it’s a work of engineering art. No word yet on reusing the mini-Kinect in the iPhone X.

Speaking of irreparable computers, the Commodore 64 is not. [Drygol] recently came across a C64 that was apparently the engine controller for a monster truck found on the bottom of the ocean. This thing was trashed, filled with rust and corrosion, and the power button just fell off. Prior to cleaning, [Drygol] soldered a new power button, bowered it up, and it worked. The crappiest C64 was repairable. A bit of cleaning, painting the case, and the installation of an SD2IEC brought this computer back to life, ready for another thirty years of retrogaming and BASIC.

The Zynq from Xilinx is one of the most interesting parts in recent memory. It’s a dual-core ARM Cortex A9 combined with an FPGA with a little more than a million reconfigurable gates. It’s been turned into a synth, a quadcopter, all of British radio, and it’s a Pynq dev board. Now there’s a new part in the Zynq family, an RFSoC that combines the general ARM/FPGA format with some RF wizardry. It’s designed for 5G wireless and radar (!), and one of those parts we can’t wait to see in use.

Do you keep blowing stuff up when attaching a USB to UART adapter to a board? Never fear, because here’s one with galvanic isolation. This is done with a neat digital isolator from Maxim

Mergers and Acquisitions: Broadcom, Qualcomm, and One Hundred Billion Dollars

Rumors have been circulating this last weekend of the largest semiconductor acquisition ever. Broadcom might buy Qualcomm for the princely sum of one hundred Billion dollars.

You will most likely be familiar with both Qualcomm and Broadcom for their wireless and cellphone chipsets. As far as the Maker community is concerned, Broadcom makes the chipset for the Raspberry Pi, but in the context of a two hundred Billion dollar company, a ‘maker’ focused Linux dev board is the equivalent of a rounding error on a balance sheet.

This news comes a little more than a year after the announcement that Qualcomm is snatching up NXP, and two years after the news of NXP is merging with Freescale. The industry is in a state of consolidation.

This proposed deal follows several other semiconductor mergers and acquisitions including NXP and Freescale, Intel and Altera, Avago and BroadcomOn Semiconductor and Fairchild, and the one we’re most befuddled with, Atmel and Microchip. Why are these companies merging? Because they’re sitting on mountains of cash. All of these mergers with the exception of Avago and Broadcom, have been for single-digit Billions of dollars. The merger of Broadcom and Qualcomm — if it happens — will be the largest merger of two semiconductor companies ever. That’s easy to do when both Broadcom and Qualcomm are on the top ten list of largest semiconductor companies, but it is evidence enough that the mergers and acquisitions in the industry are not slowing down.

Hackaday Links: September 17, 2017


Mergers and acquisitions? Not this time. Lattice Semiconductor would have been bought by Canyon Bridge — a private equity firm backed by the Chinese government — for $1.3B. This deal was shut down by the US government because of national security concerns.

[Jan] is the Internet’s expert in doing synths on single chips, and now he has something pretty cool. It’s a breadboard synth with MIDI and CV input. Basically, what we’re looking at is [Jan]’s CVS-01 chip for a DCO, DCF, and DCA), a KL5 chip for an LFO, and an envelope chip. Tie everything together with a two-octave captouch keyboard, and you have a complete synthesizer on a breadboard.

As an aside relating to the above, does anyone know what the cool kids are using for a CV/Gate keyboard controller these days? Modular synths are making a comeback, but it looks like everyone is running a MIDI keyboard into a MIDI-CV converter. It seems like there should be a –simple, cheap– controller with quarter-inch jacks labeled CV and Gate. Any suggestions?

World leaders are tweeting. The Canadian PM is awesome and likes Dark Castle.

Way back in July, Square, the ‘POS terminal on an iPad’ company posted some data on Twitter. Apparently, fidget spinner sales peaked during the last week of May, and were declining through the first few weeks of summer. Is this proof the fidget spinner fad was dead by August? I have an alternate hypothesis: fidget spinner sales are tied to middle schoolers, and sales started dropping at the beginning of summer vacation. We need more data, so if some of you could retweet this, that would be awesome.

Remember [Peter Sripol], the guy building an ultralight in his basement? This is going to be a five- or six-part video build log, and part three came out this week. This video features the installation of the control surfaces, the application of turnbuckles, and hardware that is far too expensive for what it actually is.

Hackaday Links: November 6, 2016

Here’s a life protip for you: get really, really good at one video game. Not all of them; you only want to be good – top 10% at least – at one video game. For me, that’s Galaga. It’s a great arcade game, and now it’s IoT. [justin] has been working on publishing high scores from a Galaga board to the Internet. The electronics are actually pretty simple – just a latch on a memory address, and an ESP8266 for comms.

On with the mergers and acquisitions! Lattice has been sold to Canyon Bridge, a Chinese private equity firm, for $1.3 Billion. Readers of Hackaday should know Lattice as the creators of the iCE40 FPGA platform, famously the target of the only Open Source FPGA toolchain.

The Internet of Chocolate Chip Cookies. Yes, it’s a Kickstarter for a cookie machine, because buying a tube of pre-made cookie dough is too hard. There is one quote I would like to point out in this Kickstarter: “Carbon Fiber Convection Heating Element (1300W) is more energy-efficient than traditional electric elements and heats up instantly.” Can someone please explain how a heating element can be more efficient? What does that mean? Aren’t all resistive heating elements 100% efficient by default? Or are they 0% efficient? The Internet of Cookies broke my brain.

The USB Rubber Ducky is a thumb-drive sized device that, when plugged into a computer, presents itself as a USB HID keyboard, opens up a CLI, inputs a few commands, and could potentially do evil stuff. The USB Rubber Ducky costs $45, a Raspberry Pi Zero and a USB connector costs $6. [tim] built his own USB Rubber Ducky, and the results are great.

What’s The Deal With Atmel And Microchip?

It’s been nearly a year since Microchip acquired Atmel for $3.56 Billion. As with any merger, acquisition, or buyout, there has been concern and speculation over what will become of the Atmel catalog, the Microchip catalog, and Microchip’s strategy for the coming years.

For the Hackaday audience, this is a far more important issue than Intel’s acquisition of Altera, On Semi and Fairchild, and even Avago’s purchase of Broadcom in the largest semiconductor deal in history. The reason Microchip’s acquisition of Atmel is such an important issue is simply due to the fact the Hackaday community uses a lot of their parts. This was a holy war, and even changing the name of a line of chips to ‘MCMega’ would result in a consumer rebellion, or at least a lot of very annoying tweets.

For the record, I’ve tried my best to figure out what’s going on with Microchip’s acquisition of Atmel for the last few months. I’ve talked to a few Microchip reps, a few Atmel reps, and talked to a few ‘out of band’ connections – people who should know what’s going on but aren’t directly tied to either Atmel or Microchip. The best I’ve come up with is a strange silence. From my perspective, it seems like something is going on, but no one is saying anything.

Take the following with several grains of salt, but Microchip recently got in touch with me regarding their strategy following their Atmel acquisition. In a few thousand words, they outlined what’s going on in casa Microchip, and what will happen to the Atmel portfolio in the future.

Broad Strokes

In broad strokes, the Microchip PR team wanted to emphasize a few of the plans regarding their cores, software, and how Microchip parts are made obsolete. In simple, bullet point terms, this is what Microchip passed on to me, to pass on to you:

  • Microchip will continue their philosophy of customer-driven obsolescence. This has historically been true – Microchip does not EOL parts lightly, and the state of the art from 1995 is still, somewhere, in their catalog.
  • We plan to support both Atmel Studio 7 and MPLAB® X for the foreseeable future.
  • Microchip has never focused on “one core”, but rather on the whole solution providing “one platform.” This is also true. A year ago, Microchip had the MIPS-based PIC-32 cores, a few older PIC cores, and recently Microchip has released a few ARM cores. Atmel, likewise, has the family tree of 8 and 32-bit AVR cores and the ARM-based SAM cores.
  • We will continue to support and invest in growing our 8-bit PIC® and AVR MCU product families.


In addition to the broad strokes outlined above, Microchip also sent along a few questions and answers from Ganesh Moorthy, Microchip’s President and COO. These statements dig a little bit deeper into what’s in store for the Microchip and Atmel portfolios:

How will the 32-bit products complement each other? Atmel has a few 32-bit microcontrollers, like the SAM and AT32 series. Microchip has the PIC-32. The answer to this question is, “Many of the 32-bit MCU products are largely complementary because of their different strengths and focus.  For example, the SAM series has specific families targeting lower power consumption and 5 volts where PIC32 has families more optimally suited for audio and graphics solutions. We plan to continue investing in both SAM and PIC32 families of products.

Will Atmel’s START support 8-bit AVRs? “Yes, although it is too early to commit to any specific dates at this stage, we consider modern rapid prototyping tools, such as START and the MPLAB Code Configurator, strategic for the our customers to deliver innovative and competitive solutions in this fast-paced industry.”

Now that Microchip has a complete portfolio of low-power, inexpensive 32-bit microcontrollers, will the focus on 8-bit product be inevitably reduced? No, we see that in actual embedded control applications there is still a large demand for the type of qualities that are uniquely provided by an 8-bit product such as: ease-of-use, 5V operation, robustness, noise immunity, real-time performance, long endurance, integration of analog and digital peripherals, extremely low-static power consumption and more. We don’t think that the number of bits is an appropriate / sufficient way to classify a complex product such as the modern microcontroller. We believe that having the right peripherals is actually what matters most.”

Security, Memories, WiFi, and Analog products. For both Atmel and Microchip, the most visible products in each of their portfolios is the lineup of microcontrollers. This isn’t the limit of their portfolios, though: Atmel has space-grade memories, Microchip has some very useful networking chips, and both companies have a number of security and crypto chips. In the statements given by Moorthy, very little will change. The reason for this is the relative lack of overlap in these devices. Even in segments where there is significant overlap, no EOLs are planned, circling back to the, “philosophy of customer-driven obsolescence.” In other words, if people keep buying it, it’s not going away.

The Takeaway

What is the future of Microchip post-Atmel acquisition? From what I’m seeing, not much. Microchip is falling back on their philosophy of ‘customer-driven obsolescence’. What does that mean? Any non-biased assessment of Microchip’s EOL policy is extremely generous. The chip found in the Basic Stamp 1, from 1993, is still available. It’s not recommended for new designs, but you can still buy it. That’s impressive any way you look at it.

The one thing we’re not getting out of this pseudo press release is information about what Atmel will be called in a few years. Will the Atmel mark be subsumed by a gigantic letter ‘M’? Will the company retain two different trademarks? There is no public information about this.

Yes, I know this post is a nearly verbatim copy of a pseudo press release. I’m not particularly happy this information was presented to me this way, but then again, the Atmel/Microchip ecosystem has been impressively secretive. This is the only information that exists, though, and I’m glad to have it in any event.

That said, there are a lot of people in the Hackaday community that want to know what the deal is with Microchip and Atmel. Short of pulling Jerry Seinfeld out of retirement, this is the best we’re going to get for now. Of course, if you have any info or speculation, the comments below are wide open.

Microchip To Acquire Atmel for $3.56 Billion

Just last week, there was considerable speculation that Microchip would buy Atmel. The deal wasn’t done, and there was precedent that this deal wouldn’t happen – earlier this year, Dialog made an approach at Atmel. Now, though, the deal is done: Microchip will acquire Atmel for $3.56 Billion.

There are three main companies out there making microcontrollers that are neither ancient 8051 clones or ARM devices: TI’s MSP430 series, Microchip and Atmel. Microchip has the very, very popular PIC series microcontrollers, which can be found in everything. Atmel’s portfolio includes the AVR line of microcontrollers, which are also found in everything. From phones to computers to toasters, there’s a very high probablitiy you’re going to find something produced by either Atmel or Microchip somewhere within 15 feet of your person right now.

For the hobbyist electronic enthusiast, this has led to the closest thing we have to a holy war. Atmel chips were a little easier (and cheaper) to program, but were a little more expensive. Microchip’s chips have a very long history and proportionally more proper engineers who are advocates. PIC isn’t Arduino, though, a community that has built a large and widely used code base around the AVR family.

Microchip’s acquisition of Atmel follows several mergers and acquisitions in recent months: NXP and Freescale, Intel and Altera, Avago and Broadcom, and On Semiconductor and Fairchild. The semiconductor industry has cash and wants to spend it. What this means for the Atmel product line is left to be seen. The most popular micros probably won’t be discontinued, but if you’re using unpopular Atmel micros such as the ATtiny10 you might want to grab a reel or two before they’re EOL’d.


Microchip’s Proposal To Acquire Atmel

A proposal from Microchip to acquire Atmel has been deemed a ‘superior proposal’ by Atmel’s board of directors (PDF). This is the first step in the acquisition of a merger between Microchip and Atmel, both leading semiconductor companies that have had a tremendous impact in the electronics industry.

Microchip is a leading manufacturer of microcontrollers, most famously the PIC series of micros that can be found in any and every type of electronic device. Atmel, likewise, also has a large portfolio of microcontrollers and memory devices that are found in every type of electronic device. Engineers, hackers, and electronic hobbyists are frequently sided with Microchip’s PIC line or Atmel’s AVR line of microcontrollers. It’s the closest thing we have to a holy war in electronics.

Last September, Dialog acquired announced plans to acquire Atmel for $4.6 Billion. Today’s news of a possible acquisition of Atmel by Microchip follows even larger mergers such as NXP and Freescale, Intel and Altera, Avago and Broadcom, On Semiconductor and Fairchild, and TI and Maxim. The semiconductor industry has cash on hand and costs to cut, these mergers and acquisitions are the natural order of things.

While the deal is not done, the money is on the table, and Atmel’s board is apparently interested.