A SNES CPU Replacement Via FPGA

Let’s say you had a SNES with a busted CPU. What would you do? Your SNES would be through! That is, unless, you had a replacement based on an FPGA. [leonllr] has been developing just such a thing.

The project was spawned out of necessity. [leonllr] had purchased a SNES which was struck down with a dead CPU—in particular, a defective S-CPU revision A. A search for replacements only found expensive examples, and ones that were most likely stripped from working machines. A better solution was necessary.

Hence, a project to build a replacement version of the chip using the ICE40HX8K FPGA. Available for less than $20 USD, it’s affordable, available, and has enough logic cells to do the job. It’s not just a theoretical or paper build, either. [leonllr] has developed a practical installation method to hook the ICE40HX8K up to real hardware, which uses two flex PCBs to go from the FPGA mainboard to the SNES motherboard itself. As for the IP on the FPGA, the core of the CPU itself sprung from the SNESTANG project, which previously recreated the Super Nintendo on Sipeed Tang FPGA boards. As it stands, boards are routed, and production is the next step.

It’s nice to see classic hardware resurrected by any means necessary. Even if you can’t get a whole bare metal SNES, you might be able to use half of one with a little help from an FPGA. We’ve seen similar work on other platforms, too. Meanwhile, if you’re working to recreate Nintendo 64 graphics chips in your own basement, or something equally weird, don’t hesitate to let us know!

Supercon 2024: Yes, You Can Use The Controller Area Network Outside Of Cars

Ah, the CAN bus. It’s become a communication standard in the automotive world, found in a huge swathe of cars built from the mid-1990s onwards. You’ll also find it in aircraft, ships, and the vast majority of modern tractors and associated farm machines, too.

As far as [Randy Glenn] is concerned, though, the CAN bus doesn’t have to be limited to these contexts. It can be useful far beyond its traditional applications with just about any hardware platform you care to use! He came down to tell us all about it at the 2024 Hackaday Supercon.

Continue reading “Supercon 2024: Yes, You Can Use The Controller Area Network Outside Of Cars”

Supercon 2024: A New World Of Full-Color PCBs

Printed circuit boards were once so simple. One or two layers of copper etched on a rectangular fiberglass substrate, with a few holes drilled in key locations so components could be soldered into place. They were functional objects, nothing more—built only for the sake of the circuit itself.

Fast forward to today, and so much has changed. Boards sprout so many layers, often more than 10, and all kinds of fancy geometric features for purposes both practical and pretty. But what catches they eye more than that, other than rich, saturated color? [Joseph Long] came to the 2024 Hackaday Supercon to educate us on the new world of full color PCBs.

Continue reading “Supercon 2024: A New World Of Full-Color PCBs”

Designing A Portable Mac Mini

When Apple first launched the Macintosh, it created a new sort of “Lunchbox” form factor that was relatively portable and very, very cool. Reminiscent of that is this neat portable Macintosh Mini, created by [Scott Yu-Jan].

[Scott] has created something along these lines before—putting an iPad dock on top of a Macintosh Studio to create a look vaguely reminiscent of the very first Macintosh computers. However, that build wasn’t portable—it wasn’t practical to build such a thing around the Macintosh Studio. In contrast, the Mac Mini is a lithe, lightweight thing that barely sups power—it’s much more suitable for a “luggable” computer.

The build relies on a 3D printed enclosure that wraps around the Mac Mini like a glove. Inside, there’s a chunky 20,800 mAh power bank with enough juice to run the computer for over three hours. Just like the original Mac, there’s a handle on top, too. The build’s main screen is actually an iPad Mini, hooked up to the Mac Mini. If you want to use it separately, it can be popped out just by pushing it via a cutout in the bottom of the enclosure.

[Scott] notes that it’s cool, but not exactly practical—it weighs seven pounds, mostly due to the weight of the heavy power bank. We’ve featured [Scott’s] stylish builds before, too, like this nice iPhone dock.

Continue reading “Designing A Portable Mac Mini”

LED Filaments Become Attractive Time Piece

There are a million ways to use LEDs to make a clock. [sjm4306] chose to go a relatively conventional route, making something that approximates a traditional analog timepiece. However, he did it using LED filaments to create a striking and unique design. Thus the name—FilamenTIME!

LED filaments are still relatively new on the scene. They’re basically a bunch of tiny LEDs mounted in a single package to create a single “filament” of light that appears continuous. It’s great if you want to create a bar of light without messing around with populating tons of parts and having to figure out diffusion on your own.

[sjm4306] used them to create glowing bar elements in a clock for telling the time. The outer ring contains 60 filaments for the 60 minutes in an hour, while the inner ring contains 12 filaments to denote the hours themselves. To handle so many LEDs, there are 9 shift registers on board. They’re driven by an ATmega328P which runs the show, with a DS3232MZ real-time clock onboard for keeping time.  As you might imagine, creating such a large circular clock required a large PCB—roughly a square foot in size. It doesn’t come cheap, though [sjm4306] was lucky enough to have sponsorship to cover the build. [sjm4306] is still working on the firmware, and hopes to build a smaller, more compact version, which should cut costs compared to the large single board.

It’s a neat clock, and we’d know, having seen many a timepiece around these parts. Video after the break.

Continue reading “LED Filaments Become Attractive Time Piece”

Ancient Pocket Computer Gets A Serious Serial Upgrade

[Robert’s Retro] is one of those great YouTube channels that shows us the ins and outs of old and obscure computers. [Robert] likes going a step beyond the traditional teardown though, repairing and upgrading these old machines. His latest project involves giving the ZEOS Pocket PC a fully-functional serial port. 

If you’re unfamiliar with the ZEOS Pocket PC, you might know it as the Tidalwave PS-1000—it’s a pretty straightforward clone. Originally, these machines could be had with a proprietary serial adapter to enable them to interface with external peripherals. However, like most obscure cables and connectors from three decades ago, they’re virtually unobtainable today.

To solve this problem, [Robert] decided to hack in a traditional DE-9 connector instead. Commonly referred to as the DB-9, this is the most common serial port design used on IBM PCs and compatibles. Getting the larger port into the compact PC required some careful hacking of the case, as well as delicate soldering to hook up the pins to the right signals on the tightly-packed motherboard. This video does involve cutting some vintage plastic, but overall it’s a very neat mod that is handled with due respect and care.

This isn’t the first time we’ve seen him upgrade a classic portable computer, either.

Continue reading “Ancient Pocket Computer Gets A Serious Serial Upgrade”

Metal Detector Built With Smartphone Interface

If you think of a metal detector, you’re probably thinking of a fairly simple device with a big coil and a piercing whine coming from a tinny speaker. [mircemk] has built a more modern adaptation. It’s a metal detector you can use with your smartphone instead.

The metal detector part of the project is fairly straightforward as far as these things go. It uses the pulse induction technique, where short pulses are fired through a coil to generate a magnetic field. Once the pulse ends, the coil is used to detect the decaying field as it spreads out. The field normally fades away in a set period of time. However, if there is metal in the vicinity, the time to decay changes, and by measuring this, it’s possible to detect the presence of metal.

In this build, an ESP32 is in charge of the show, generating the necessary pulses and detecting the resulting field. It’s paired with the usual support circuitry—an op-amp and a few transistors to drive the coil appropriately, and the usual smattering of passives. The ESP32 then picks up the signal from the coil and processes it, passing the results to a smartphone via Bluetooth.

The build is actually based on a design by [Neco Desarrollo], who presents more background and other variants for the curious. We’ve featured plenty of [mircemk]’s projects before, like this neat proximity sensor build. Continue reading “Metal Detector Built With Smartphone Interface”