Playing NES Games On An Industrial EL Display

Modern consoles are fun, but there are certain charms to retro gear that keep hackers entertained to this day. The original NES is a particularly ripe ground for projects, being one of the most popular consoles of its era. [kevtris] is one such Nintendo hacker, and decided to get NES games running on an old-school electroluminescent display (Youtube video, embedded below).

The display in this project was originally used in an industrial pick-and-place machine.

Rather than work with an original NES, [kevtris] chose to instead work with the NT Mini, an FPGA-based clone of his own design. Having picked up an EL640.480-AA1 screen, formerly from a DEK 265LT pick-and-place machine, he hunted down a data sheet and got to work. With the document outlining the required video input specifications, it was a simple matter of whipping up some Verilog and an adapter cable to get things working.

Mario, Kirby and friends can now run around, looking resplendent in the 9 colors of the red/green EL display. [kevtris] notes that the screen performs well with fast motion, and estimates the refresh rate to be in the vicinity of 60Hz. For those of you playing along at home, such screens are available online, though they’re not exactly cheap.

We’ve seen [kevtris]’s work before, with his SNES chiptune player being particularly impressive. Video after the break.

[Thanks to Morris for the tip!]

Continue reading “Playing NES Games On An Industrial EL Display”

Novice Coders Can Create Classic Game Boy Games

It takes a lot of work to build a modern video game. Typically an entire company will spend months (at least) developing the gameplay, selecting or programming an engine, and working out the bugs. This amount of effort isn’t strictly necessary for older video game systems though, and homebrew developers are quite often able to develop entire games singlehandedly for classic systems. In the past it would have taken some special software, programming knowledge, and possibly hardware, but now anyone can build games for the original Game Boy with minimal barriers of entry.

The project is known as GB Studio and allows people to develop homebrew games for the 8-bit handheld system without programming knowledge. Once built, the games can be played on any emulator or even loaded onto a cartridge and played on original hardware if a flash cart is available. Graphics can be created with anything that can create a .png image, and there are also some features that allow the game to be played over a web browser or on a mobile device.

While it seems like the gameplay is limited to RPG-style games, this is still an impressive feat, and highly useful for anyone curious about game development. It could also be an entry into more involved game programming if it makes the code of the games available to the user. It could even lead to things like emulating entire cartridges on the original hardware.

Thanks to [Thomas] for the tip!

Continue reading “Novice Coders Can Create Classic Game Boy Games”

Nintendo’s Cardboard Piano Becomes A Real Working Instrument

Nintendo’s LABO piano is a strange kind of instrument. Hewn out of cardboard and used in combination with some advanced software, it’s entirely passive, with all the sound generation and smarts coming from the Switch console which slots into the body. [Simon the Magpie] decided that this simply wouldn’t do, and set about turning the LABO piano into a real synthesizer (Youtube link, embedded below).

In order to pull off this feat, [Simon] sourced an OKAY synth kit– a basic monophonic synthesizer designed to fit inside a 3D printed case. Instead, here it’s built inside the LABO’s roomy cardboard housing. The keyboard is reinforced with duct tape and tweaked to accept those common and horrible red SPST buttons, and the front panel is fitted with control dials where the Switch would usually sit.

After some careful crafting, the piano is ready to rock. It’s not the most responsive instrument, with the flexible cardboard struggling to reliably trigger the installed buttons, but it does work. [Simon] performs a small instrumental piece over a drum track to demonstrate that you don’t need a Nintendo Switch to have fun with the LABO piano.

Expect to see similar builds on stage at chiptune shows in the next few years – at least until mold gets the better of them. There are other ways to hack the LABO piano, too. Video after the break.

Continue reading “Nintendo’s Cardboard Piano Becomes A Real Working Instrument”

ESP32 Adds Bluetooth To GameCube Controllers

While it might not be the most traditional design, there’s no debating that Nintendo created something truly special when they unleashed the GameCube controller on an unsuspecting world back in 2001. Hardcore fans are still using the controller to this day with current-generation Nintendo consoles, and there’s considerable interest in adding modern conveniences like USB support to the nearly 20-year-old design.

One particularly promising project is the BlueCubeMod created by [Nathan Reeves]. He’s developed a small custom PCB that can be installed into an official GameCube controller to turn it into a Bluetooth device. You do have to sacrifice the original cord and force feedback for this mod, but we think many will see the ability to use this iconic controller with their computer or phone as a pretty fair trade.

The PCB holds an ESP32-PICO-D4 which is operating as a standard Bluetooth HID controller for maximum compatibility with modern systems. Control signals are pulled directly from the controller’s original PCB with just two wires, making the installation very simple. Wondering where the power comes from? As the rumble motor isn’t supported anyway, that gets tossed and in its places goes a 700 mAh battery which powers the controller for up to six hours. Overall it’s a very clean modification that [Nathan] believes even beginners will be capable of, and he ultimately plans to turn this design into a commercial kit.

Currently you still need a receiver if you want to use the BlueCubeMod with the Nintendo Switch, but [Nathan] says he’s working on a way to get around that requirement by potentially switching out the ESP32 for a STM32 with a CC256x radio. He says this will give him more direct control over the Bluetooth communications, which should allow him to take into tackle the intricacies of talking to the Switch directly.

Of course, the GameCube did have an official wireless controller back in the day. We’ve seen modifications to get the WaveBird to get it talking to modern systems as well, but there’s something to be said for slimmer form factor of the original edition.

Continue reading “ESP32 Adds Bluetooth To GameCube Controllers”

A Chandelier Guaranteed To Make Some Retro Game Hardware Collectors Wince

If there’s one thing our community is good at, it’s re-imagining redundant old hardware, particularly in the field of classic gaming consoles and their peripherals. Dead consoles have become new ones, Powergloves have ventured into virtual reality, and light guns, well, they’ve become novelty light fittings.

The [JJGames] Nintendo light gun chandelier will probably make collectors wince who prefer their retro hardware pristine, but it’s certainly an eye-catching conversation piece. The twelve guns are carefully disassembled and the Nintendo electronics removed, before a bulb holder and teardrop lamp is installed. Wiring is completed with twist caps,  the guns are joined at the grip with some metal strips and glue, and a chain for ceiling attachment completes the ensemble. A dozen pieces of ireplacable retro hardware sacrificed for a novelty, or a masterpiece of interior decoration? You decide, though we’d opt for the latter in the context of the retro games based business in which it sits.

Our favourite NES lightgun hack ever has to be [Seb Lee-Delisle]’s one that fires a real laser. Meanwhile [JJGames] have made it here before in a similarly wanton use of classic Nintendo plastic, with their urinal made from SNES cartridges.

Circuit-Level Game Boy: Upping Emulation Ante By Simulating Every Cycle

Usually when writing emulation software for a system like the Game Boy, one makes sure to take as many shortcuts as possible in order to reduce the resources required for the emulation. This has however the unfortunate side-effect that it reduces the overall accuracy of the emulation and with it the compatibility with games on the system.

This is the basic reasoning behind projects which seek to abandon simplistic abstractions in favor of cycle-accurate, full compatibility approaches, of which MetroBoy is probably the most extreme one. Instead of abstracting away the hardware, it instead does the emulation at the circuit level. As with such other projects, this means that the emulator requires a lot more CPU cycles to get things just right. On the bright side, one can likely still run this emulator on any modern system.

As the MetroBoy author explains, he implemented code in C++ which allowed him to construct circuits in an HDL-style manner, which should theoretically also allow him to generate a Verilog (or VHDL) softcore out of the project. As a demonstration of implementing HDL in C++ it’s decidedly interesting.

An approach like this is pretty much the exact opposite of a project like the UltraHLE (ultra high-level emulator) Nintendo 64 emulator, which used the knowledge that Nintendo 64 games are written in C as a first step to creating libraries that the code in the Nintendo 64 ROMs would call instead of the native (Nintendo) libraries. This allowed N64 games to directly run on the target system, with the graphic and system calls translated by UltraHLE into native OS calls, using the 3dfx Glide API for accelerated graphics.

While an approach like UltraHLE took allows for the most minimal use of system resources by essentially foregoing emulation completely, for retro systems like the Game Boy where games were implemented in assembly on bare hardware, using this circuit-level emulation ensures that one gets the most accurate match with the original handheld console experience.

As a word of caution to those who are now itching to try out MetroBoy, its Github site notes that it currently lacks support for game saves, uses a mixture of original Game Boy (DMG) and Game Boy Advance SP (AGS) hardware that confuses some games and has rather buggy sound support.

If playing around with software-defined Game Boy circuits isn’t enough and would like to literally look inside a real Game Boy, the X-ray image from the top of the article is something Chris over at Elektronaut pulled off several years ago.

Manufacturing SimCity For The NES

Late last year, news broke of impossibly rare artifact from the age of the Nintendo Entertainment System. SimCity was the classic simulation game for PC and just about every other console, and it was written for the NES but never released. Now one guy finally got around to digging out his copy, which was dumped at the Portland Retro Gaming Expos and finally put on the Internet. It’s an unfinished game but it’s mostly playable, even if it is a bit more primitive than the PC version.

[Matt] wanted to build his own copy of SimCity for the NES, so that’s what he did. It’s a project that took months of work and a ton of research, but finally there’s a professional-looking cartridge version of SimCity.

With the ROM for SimCity loose on the Internet, that part of the build was relatively easy. You can still get EPROMs or EEPROMs, UV erasers, and a good programmer will run you fifty bucks through the usual vendors. There are even places on the Internet that will split up the emulator-compatible ROM file into two files for the character and program ROM in each NES cartridge. The trick here is finding the right cartridge with the right mapper. It turns out there are only four games that you can simply drop SimCity ROM chips into and expect everything to work. All of these games cost a small fortune, but their Famicom versions are cheap.

After carefully desoldering the Famicom game, soldering in the new chips, and applying a fancy professional label, [Matt] had his cartridge version of SimCity for the NES. It’s for a Famicom, though, but you can get adapters for that. Check out the video below.

Continue reading “Manufacturing SimCity For The NES”