The Great Redbox Cleanup: One Company Is Hauling Away America’s Last DVD Kiosks

Remember Redbox? Those bright red DVD vending machines that dotted every strip mall and supermarket in America, offering cheap rentals when Netflix was still stuffing discs into paper envelopes? After streaming finally delivered the killing blow to physical rentals, Redbox threw in the towel in June 2024, leaving around 34,000 kiosks standing as silent monuments to yet another dead media format.

Last month, we reported that these machines were still out there, barely functional and clinging to life. Now, a company called The Junkluggers has been tasked with the massive undertaking of clearing these mechanical movie dispensers from the American retail landscape, and they’re doing it in a surprisingly thoughtful way. I chatted to them to find out how it’s going.

Continue reading “The Great Redbox Cleanup: One Company Is Hauling Away America’s Last DVD Kiosks”

Ruined 1993 ThinkPad Tablet Brought Back From The Brink

Collecting retrocomputers is fun, especially when you find fully-functional examples that you can plug in, switch on, and start playing with. Meanwhile, others prefer to find the damaged examples and nurse them back to health. [polymatt] can count himself in that category, as evidenced by his heroic rescue of an 1993 IBM ThinkPad Tablet.

The tablet came to [polymatt] in truly awful condition. Having been dropped at least once, the LCD screen was cracked, the case battered, and all the plastics were very much the worse for wear. Many of us would consider it too far gone, especially considering that replacement parts for such an item are virtually unobtainable. And yet, [polymatt] took on the challenge nonetheless.

Despite its condition, there were some signs of life in the machine. The pen-based touch display seemed to respond to the pen itself, and the backlight sort of worked, too. Still, with the LCD so badly damaged, it had to be replaced. Boggling the mind, [polymatt] was actually able to find a 9.4″ dual-scan monochrome LCD that was close enough to sort-of fit, size-wise. To make it work, though, it needed a completely custom mount to fit with the original case and electromagnetic digitizes sheet. From there, there was plenty more to do—recapping, recabling, fixing the batteries, and repairing the enclosure including a fresh set of nice decals.

The fact is, 1993 IBM ThinkPad Tablets just don’t come along every day. These rare specimens are absolutely worth this sort of heroic restoration effort if you do happen to score one on the retro market. Video after the break.

Continue reading “Ruined 1993 ThinkPad Tablet Brought Back From The Brink”

Microfluidic Motors Could Work Really Well For Tiny Scale Tasks

The vast majority of motors that we care about all stick to a theme. They rely on the electromagnetic dance between electrons and magnets to create motion. They come in all shapes and sizes and types, but fundamentally, they all rely on electromagnetic principles at heart.

And yet! This is not the only way to create a motor. Electrostatic motors exist, for example, only they’re not very good because electrostatic forces are so weak by comparison. Only, a game-changing motor technology might have found a way to leverage them for more performance. It achieves this by working with fluid physics on a very small scale.

Continue reading “Microfluidic Motors Could Work Really Well For Tiny Scale Tasks”

Laser Sound Visualizations Are Not Hard To Make

You might think that visualizing music with lasers would be a complicated and difficult affair. In fact, it’s remarkably simple if you want it to be, and [byte_thrasher] shows us just how easy it can be.

At heart, what you’re trying to do is make a laser trace out waveforms of the music you’re listening to, right? So you just need a way to move the laser’s beam along with the sound waves from whatever you’re listening to. You might be thinking about putting a laser on the head of a servo-operated platform fed movement instructions from a digital music file, but you’d be way over-complicating things. You already have something that moves with the music you play — a speaker!

[byte_thrasher’s] concept is simple. Get a Bluetooth speaker, and stick it in a bowl. Cover the bowl with a flexible membrane, like plastic wrap. Stick a small piece of mirror on the plastic. When you play music with the speaker, the mirror will vibrate and move in turn. All you then have to do is aim a safe laser in a safe direction such that it bounces off the mirror and projects on to a surface. Then, the laser will dance with your tunes, and it’ll probably look pretty cool!

We’ve seen some beautiful laser visual effects before, too. Just be careful and keep your power levels safe and your beams pointing where they should be.

Continue reading “Laser Sound Visualizations Are Not Hard To Make”

Remember The Tri-Format Floppy Disk?

These days, the vast majority of portable media users are storing their files on some kind of Microsoft-developed file system. Back in the 1980s and 1990s, though, things were different. You absolutely could not expect a floppy disk from one type of computer to work in another. That is, unless you had a magical three-format disk, as [RobSmithDev] explains.

The tri-format disk was a special thing. It was capable of storing data in Amiga, PC, and Atari ST formats. This was of benefit for cover disks—a magazine could put out content for users across all three brands, rather than having to ship multiple disks to suit different machines.

[RobSmithDev] started investigating by reading the tri-format disk with his DiskFlashback tool. The tool found two separate filesystems. The Amiga filesystem took up 282 KB of space. The second filesystem contained two folders—one labelled PC, the other labelled ST. The Atari ST folder contained 145KB of data, while the PC folder used 248 KB. From there, we get a breakdown on how the data for each format is spread across the disk, right down to the physical location of the data. The different disk formats of each system allowed data to be scattered across the disk such that each type of computer would find its relevant data where it expected it to be.

It’s a complex bit of disk engineering that allowed this trick to work, and [Rob] explains it in great detail. We love nitty gritty storage hacks around here. Video after the break.

Continue reading “Remember The Tri-Format Floppy Disk?”

WAV2VGM Plays Audio Via OPL3 Synthesis

Once upon a time, computers didn’t really have enough resources to play back high-quality audio. It took too much RAM and too many CPU cycles and it was just altogether too difficult. Instead, they relied upon synthesizing audio from basic instructions to make sounds and music. [caiannello] has taken advantage of this with the WAV2VGM project.

The basic concept is straightforward enough—you put a WAV audio file into the tool, and it spits out synthesis instructions for the classic OPL3 sound card. The Python script only works with 16-bit mono WAV files with a 44,100 Hz sample rate.

Amazingly, check the samples, and you’ll find the output is pretty recognizable. You can take a song with lyrics (like Still Alive from Portal), turn it into instructions for an OPL3, and it’s pretty intelligible. It sounds… glitchy and damaged, but it’s absolutely understandable.

It’s a fun little retro project that, admittedly, doesn’t have a lot of real applications. Still, if you’re making a Portal clone for an ancient machine with an OPL3 compatible sound chip, maybe this is the best way to do the theme song? If you’re working on exactly that, by some strange coincidence, be sure to let us know when you’re done!

You Wouldn’t Download A Chair…But You Could

[Morley Kert] had a problem. He’s a big fan of the lovely Fortune Chair from Heller Furniture. Only, he didn’t want to pay $1,175 for a real one. The solution? He printed his own instead!

The basic concept is simple. Capture or recreate the geometry of the fancy expensive designer chair, and then print it out on a 3D printer. That would be easy, except for scale. Chairs have to be both big enough to seat humans, and strong enough to carry their weight. For the average 3D printer owner, meeting the big requirement is difficult, since most printers are quite small compared to chairs.

[Morley] gets around this in the typical fashion—he prints the chair in multiple segments. Indeed, we’ve seen [Morley] tackle a similar project before, too. Only, last time, he had the benefit of a print farm and some easily-accessible geometry for the target object. This time, he’s working very much more from scratch, and chose to print everything at home. That made things quite a bit harder.

Scaling up is never as easy at it seems at first!

Continue reading “You Wouldn’t Download A Chair…But You Could”