Neutron Flux Impact On Quartz Expansion Rate

Radiation-induced volumetric expansion (RIVE) is a concern for any concrete structures that are exposed to neutron flux and other types of radiation that affect crystalline structures within the aggregate. For research facilities and (commercial) nuclear reactors, RIVE is generally considered to be one of the factors that sets a limit on the lifespan of these structures through the cracking that occurs as for example quartz within the concrete undergoes temporary amorphization with a corresponding volume increase. The significance of RIVE within the context of a nuclear power plant is however still poorly studied.

A recent study by [Ippei Maruyama] et al. as published in the Journal of Nuclear Materials placed material samples in the LVR-15 research reactor in the Czech Republic to expose them to an equivalent neutron flux. What their results show is that at the neutron flux levels that are expected at the biological shield of a nuclear power plant, the healing effect from recrystallization is highly likely to outweigh the damaging effects of amorphization, ergo preventing RIVE damage.

This study follows earlier research on the topic at the University of Tokyo by [Kenta Murakami] et al., as well as by Chinese researchers, as in e.g. [Weiping Zhang] et al. in Nuclear Engineering and Technology. [Murayama] et al. recommend that for validation of these findings concrete samples from decommissioned nuclear plants are to be examined for signs of RIVE.

Heading image: SEM-EDS images of the pristine (left) and the irradiated (right) MC sample. (Credit: I. Murayama et al, 2022)

A Gentle Introduction To COBOL

As the Common Business Oriented Language, COBOL has a long and storied history. To this day it’s quite literally the financial bedrock for banks, businesses and financial institutions, running largely unnoticed by the world on mainframes and similar high-reliability computer systems. That said, as a domain-specific language targeting boring business things it doesn’t quite get the attention or hype as general purpose programming or scripting languages. Its main characteristic in the public eye appears be that it’s ‘boring’.

Despite this, COBOL is a very effective language for writing data transactions, report generating and related tasks. Due to its narrow focus on business applications, it gets one started with very little fuss, is highly self-documenting, while providing native support for decimal calculations, and a range of I/O access and database types, even with mere files. Since version 2002 COBOL underwent a number of modernizations, such as free-form code, object-oriented programming and more.

Without further ado, let’s fetch an open-source COBOL toolchain and run it through its paces with a light COBOL tutorial.

Continue reading “A Gentle Introduction To COBOL”

Building An NRF52840 And Battery-Powered Zigbee Gate Sensor

Recently [Glen Akins] reported on Bluesky that the Zigbee-based sensor he had made for his garden’s rear gate was still going strong after a Summer and Winter on the original 2450 lithium coin cell. The construction plans and design for the unit are detailed in a blog post. At the core is the MS88SF2 SoM by Minew, which features a Nordic Semiconductor nRF52840 SoC that provides the Zigbee RF feature as well as the usual MCU shenanigans.

Previously [Glen] had created a similar system that featured buttons to turn the garden lights on or off, as nobody likes stumbling blindly through a dark garden after returning home. Rather than having to fumble around for a button, the system should detect when said rear gate is opened. This would send a notification to [Glen]’s phone as well as activate the garden lights if it’s dark outside.

Although using a reed relay switch seemed like an obvious solution to replace the buttons, holding it closed turned out to require too much power. After looking at a few commercial examples, he settled for a Hall effect sensor solution with the Ti DRV5032FB in a TO-92 package.

Whereas the average person would just have put in a PIR sensor-based solution, this Zigbee solution does come with a lot more smart home creds, and does not require fumbling around with a smartphone or yelling at a voice assistant to turn the garden lights on.

Comparing ‘AI’ For Basic Plant Care With Human Brown Thumbs

The future of healthy indoor plants, courtesy of AI. (Credit: [Liam])
The future of healthy indoor plants, courtesy of AI. (Credit: [Liam])
Like so many of us, [Liam] has a big problem. Whether it’s the curse of Brown Thumbs or something else, those darn houseplants just keep dying despite guides always telling you how incredibly easy it is to keep them from wilting with a modicum of care each day, even without opting for succulents or cactuses. In a fit of despair [Liam] decided to pin his hopes on what we have come to accept as the Savior of Humankind, namely ‘AI’, which can stand for a lot of things, but it’s definitely really smart and can even generate pretty pictures, which is something that the average human can not. Hence it’s time to let an LLM do all the smart plant caring stuff with ‘PlantMom’.

Since LLMs so far don’t come with physical appendages by default, some hardware had to be plugged together to measure parameters like light, temperature and soil moisture. Add to this a grow light and a water pump and all that remained was to tell the LMM using an extensive prompt, containing Python code, what it should do (keep the the plant alive), and what Python methods are available. All that was left now was to let the Google’s Gemma 3 handle it.

To say that this resulted in a dramatic failure along with what reads like an emotional breakdown on the part of the LLM would be an understatement. The LLM insisted on turning the grow light on when it should be off and had the most erratic watering responses imaginable based on absolutely incorrect interpretations of the ADC data, flipping dry and wet. After this episode the poor chili plant’s soil was absolutely saturated and is still trying to dry out, while the ongoing LLM experiment, with an empty water tank, has the grow light blasting more often than a weed farm.

So far it seems like that the humble state machine’s job is still safe from being taken over by ‘AI’, and not even brown thumb folk can kill plants this efficiently.

ASUS GPU Uses Gyroscope To Warn For Sagging Cards

It’s not really an understatement to say that over the years videocards (GPUs) — much like CPU coolers — have become rather chonky. Unfortunately, the PCIe slots they plug into were never designed with multi-kilogram cards in mind. All this extra weight is of course happily affected by gravity.

The dialog in Asus' GPU Tweak software that shows the degrees of sag for your GPU. (Credit: Asus)

The problem has gotten to the point that the ASUS ROG Astral RTX 5090 card added a Bosch Sensortec BMI323 inertial measurement unit (IMU) to provide an accelerometer and angular rate (gyroscope) measurements, as reported by [Uniko’s Hardware] (in Chinese, see English [Videocardz] article).

There are so-called anti-sag brackets that provide structural support to the top of the GPU where it isn’t normally secured. But since this card weighs in at over 6 pounds (3 kilograms) for the air cooled model, it appears the bracket wasn’t enough, and active monitoring was necessary.

The software allows you to set a sag angle at which you receive a notification, which would presumably either allow you to turn off the system and readjust the GPU, or be forewarned when it is about to rip itself loose from the PCIe slot and crash to the bottom of the case.

YKK’s Self-Propelled Zipper: Less Crazy Than It Seems

The self-propelled zip fastener uses a worm gear to propel itself along the teeth. (Credit: YKK)
The self-propelled zip fastener uses a worm gear to propel itself along the teeth. (Credit: YKK)

At first glance the very idea of a zipper that unzips and zips up by itself seems somewhat ridiculous. After all, these contraptions are mostly used on pieces of clothing and gear where handling a zipper isn’t really sped up by having an electric motor sluggishly move through the rows of interlocking teeth. Of course, that’s not the goal of YKK, which is the world’s largest manufacturer of zip fasteners. The demonstrated prototype (original PR in Japanese) shows this quite clearly, with a big tent and equally big zipper that you’d be hard pressed to zip up by hand.

The basic application is thus more in industrial applications and similar, with one of the videos, embedded below, showing a large ‘air tent’ being zipped up automatically after demonstrating why for a human worker this would be an arduous task. While this prototype appears to be externally powered, adding a battery or such could make it fully wireless and potentially a real timesaver when setting up large structures such as these. Assuming the battery isn’t flat, of course.

It might conceivably be possible to miniaturize this technology to the point where it’d ensure that no fly is ever left unzipped, and school kids can show off their new self-zipping jacket to their friends. This would of course have to come with serious safety considerations, as anyone who has ever had a bit of their flesh caught in a zipper can attest to.

Continue reading “YKK’s Self-Propelled Zipper: Less Crazy Than It Seems”

Sigrok Website Down After Hosting Data Loss

When it comes to open source signal analysis software for logic analyzers and many other sensors, Sigrok is pretty much the only game in town. Unfortunately after an issue with the server hosting, the website, wiki, and other documentation is down until a new hosting provider is found and the site migrated. This leaves just the downloads active, as well as the IRC channel (#sigrok) over at Libera.chat.

This is not the first time that the Sigrok site has gone down, but this time it seems that it’s more final. Although it seems a new server will be set up over the coming days, this will do little to assuage those who have been ringing the alarm bells about the Sigrok project. Currently access to documentation is unavailable, except via the WaybackMachine’s archive.

A tragic reality of FOSS projects is that they are not immortal, with them requiring constant time, money and effort to keep servers running and software maintained. This might be a good point for those who have a stake in Sigrok to consider what the project means to them, and what it might mean if it were to shutdown.