Fnirsi IPS3608: A Bench Power Supply With Serious Flaws

Fnirsi is one of those brands that seem to pop up more and more often, usually for portable oscilloscopes and kin. Their IPS3608 bench power supply is a bit of a departure from that, offering a mains-powered PSU that can deliver up to 36 VDC and 8 A in a fairly compact, metal enclosure. Recently [Joftec] purchased one of these units in order to review it and ended up finding a few worrying flaws in the process.

One of the claims made on the product page is that it is ‘much more intelligent than traditional power supplies’, which is quite something to start off with. The visual impression of this PSU is that it’s somewhat compromised already, with no earth point on the front next to the positive and negative banana plug points, along with a tilting screen that has trouble staying put. The USB-C and -A ports on the front support USB-PD 3.0 and a range of fast charge protocols

The ‘intelligence’ claim seems to come mostly from the rather extensive user interface, including a graphing function. Where things begin to fall apart is when the unit locks up during load testing presumably due to an overheating event. After hooking up an oscilloscope, the ripple at 1 VDC was determined to be about 200 mV peak-to-peak at 91 kHz. Ripple increased at higher voltages, belying the ’10 mV ultra-low ripple’ claim.

A quick teardown revealed the cause for the most egregious flaw of the unit struggling to maintain even 144 Watt output: a very undersized heatsink on the SMPS board. The retention issues with the tilting issue seemed to be due to a design choice that prevents the screen from rotating without breaking plastic. While this latter issue could be fixed, the buggy firmware and high ripple on the DC output make this €124 ‘285 Watt’ into a hard pass.

Continue reading “Fnirsi IPS3608: A Bench Power Supply With Serious Flaws”

Fire Extinguishers, Optical Density Ratings And Safely Using Home Lasers

Ski goggle type laser safety lenses may look dorky, but they leave no gaps and fit around glasses. (Credit: FauxHammer, YouTube)
Ski goggle type laser safety lenses may look dorky, but they leave no gaps and fit around glasses. (Credit: FauxHammer, YouTube)

After [Ross] from FauxHammer miniature model fame got lured into reviewing laser engravers and similar via the Bambu Lab H2D’s laser module, he found himself getting slightly nervous about the whole ‘safety’ aspect of these lasers. After all, lasers can not only light stuff on fire, but it’s a well-known fact that even reflected laser light can be sufficient to cause permanent damage to your retinas. Or worse.

Since your eyes generally do not regenerate, it makes sense to get caught up on laser safety before turning on one of those plentiful-and-increasingly-affordable home laser systems for engraving and/or cutting.

While the issue of stuff catching on fire is readily solved by having a good CO2 extinguisher – and plan B options – at the ready, for safety glasses it’s significantly more complex. There’s not just the issue of finding glasses that block the wavelength of the laser system that you are using, but also with the right optical density (OD) rating. Every mm of the safety lens material can attenuate a certain amount of laser light at the given wavelength, so the OD rating of your laser safety goggles need to match the laser’s power output level, or you might be living with a false sense of security.

Finally, there is the issue of the smoke and fumes produced by these lasers as they obliterate the target material. Much of what is in this smoke you do not want to breathe in, even ignoring long-term dust and VOC exposure issues, so having a solid fume extraction setup and PPE as necessary are absolute necessities. As [Ross] puts it, you don’t want to breathe in the smell of regret today, for your future self to reflect on a decade from now.

Work safe, work smart, don’t become the subject of a laser safety PSA.

Continue reading “Fire Extinguishers, Optical Density Ratings And Safely Using Home Lasers”

BCacheFS Is Now A DKMS Module After Exile From The Linux Kernel

It’s been a tense few months for users of the BCacheFS filesystem, as amidst the occasional terse arguments and flowery self-praise on the Linux Kernel mailing list the future of this filesystem within the Linux kernel hung very much in the balance. After some initial confusion about what ‘externally maintained’ means in Linux parlance, it’s now clear that this means that BCacheFS has effectively been kicked out of the kernel as [Linus] promised and will ship as a DKMS module instead. The gory details of this change are discussed in a recent video by [Brodie Robertson].

We covered the BCacheFS controversy in the Linux world a few months ago, amidst reports of data loss and filesystem corruption among its users. Its lead developer, [Kent Overstreet], came to blows with [Linus Torvalds] on the LKML after [Kent] insisted on repeatedly pushing new features into kernel release candidate branches along with rather haughty statements on why he should be able to do this.

To make a long story short, [Linus] didn’t like this and froze BCacheFS support in the current kernel release with all future in-kernel development ceased. Distributions like SuSE have initially said that will disable BCacheFS starting in kernel version 6.17, meaning that users of BCacheFS may now have to install the DKMS module themselves. Some distributions like Arch are likely to include this DKMS module by default, which is something you want to check if you use this filesystem.

Continue reading “BCacheFS Is Now A DKMS Module After Exile From The Linux Kernel”

Enhanced Definition TV: “A Poor Man’s High-Def”

Although to many of us the progression from ‘standard definition’ TV and various levels of high-definition at 720p or better seemed to happen smoothly around the turn of the new century, there was a far messier technological battle that led up to this. One of these contenders was Enhanced Definition TV (EDTV), which was 480p in either 4:3 or 16:9, as a step up from Standard Definition TV (SDTV) traditional TV quality. The convoluted history of EDTV and the long transition to proper HDTV is the subject of a recent video by [VWestlife].

One reason why many people aren’t aware of EDTV is because of marketing. With HDTV being the hot new bullet point to slap on a product, a TV being widescreen was often enough to market an EDTV with 480p as ‘HD’, not to mention the ‘HD-compatible’ bullet point that you could see everywhere.

That said, the support for digital 480p and ‘simplified 1080i’ signals of EDTV makes these displays still quite usable today, more than SDTV CRTs and LCDs that are usually limited to analog signals-only at regular NTSC, PAL or SECAM. It may not be HD, but at least it’s enhanced.

Continue reading “Enhanced Definition TV: “A Poor Man’s High-Def””

Naturally Radioactive Food And Safe Food Radiation Levels

There was a recent recall of so-called ‘radioactive shrimp’ that were potentially contaminated with cesium-137 (Cs-137). But contamination isn’t an all-or-nothing affair, so you might wonder exactly how hot the shrimp were. As it turns out, the FDA’s report makes clear that the contamination was far below the legal threshold for Cs-137. In addition, not all of the recalled shrimp was definitely contaminated, as disappointing as all of this must be to those who had hoped to gain radioactive Super Shrimp powers.

After US customs detected elevated radiation levels in the shrimp that was imported from Indonesia, entry for it was denied, yet even for these known to be contaminated batches the measured level was below 68 Bq/kg. The FDA limit here is 1,200 Bq/kg, and the radiation level from the potassium-40 in bananas is around the same level as these ‘radioactive shrimp’, which explains why bananas can trigger radiation detectors when they pass through customs.

But this event raised many questions about how sensible these radiation checks are when even similar or higher levels of all-natural radioactive isotopes in foods pass without issues. Are we overreacting? How hot is too hot?

Continue reading “Naturally Radioactive Food And Safe Food Radiation Levels”

See Voyager’s 1990 ‘Solar System Family Portrait’ Debut

It’s been just over 48 years since Voyager 1 was launched on September 5, 1977 from Cape Canaveral, originally to study our Solar System’s planets. Voyager 1 would explore Jupiter and Saturn, while its twin Voyager 2 took a slightly different route to ogle other planets. This primary mission for both spacecraft completed in early 1990, with NASA holding a press conference on this momentous achievement.

To celebrate the 48th year of the ongoing missions of Voyager 1 and its twin, NASA JPL is sharing an archive video of this press conference. This was the press conference where Carl Sagan referenced the pinpricks of light visible in some images, including Earth’s Pale Blue Dot, which later would become the essay about this seemingly insignificant pinprick of light being the cradle and so far sole hope for the entirety of human civilization.

For most people in attendance at this press conference in June of 1990 it would likely have seemed preposterous to imagine both spacecraft now nearing their half-century of active service in their post-extended Interstellar Mission. With some luck both spacecraft will soon celebrate their 50th launch day, before they will quietly sail on amidst the stars by next decade as a true testament to every engineer and operator on arguably humanity’s most significant achievement in space.

Thanks to [Mark Stevens] for the tip.

Continue reading “See Voyager’s 1990 ‘Solar System Family Portrait’ Debut”

Hosting A Website On A Disposable Vape

For the past years people have been collecting disposable vapes primarily for their lithium-ion batteries, but as these disposable vapes have begun to incorporate more elaborate electronics, these too have become an interesting target for reusability. To prove the point of how capable these electronics have become, [BogdanTheGeek] decided to turn one of these vapes into a webserver, appropriately called the vapeserver.

While tearing apart some of the fancier adult pacifiers, [Bogdan] discovered that a number of them feature Puya MCUs, which is a name that some of our esteemed readers may recognize from ‘cheapest MCU’ articles. The target vape has a Puya PY32F002B MCU, which comes with a Cortex-M0+ core at 24 MHz, 3 kB SRAM and 24 kB of Flash. All of which now counts as ‘disposable’ in 2025, it would appear.

Even with a fairly perky MCU, running a webserver with these specs would seem to be a fool’s errand. Getting around the limited hardware involved using the uIP TCP/IP stack, and using SLIP (Serial Line Internet Protocol), along with semihosting to create a serial device that the OS can use like one would a modem and create a visible IP address with the webserver.

The URL to the vapeserver is contained in the article and on the GitHub project page, but out of respect for not melting it down with an unintended DDoS, it isn’t linked here. You are of course totally free to replicate the effort on a disposable adult pacifier of your choice, or other compatible MCU.