RIP Danal Estes, Developer Of Multitool 3D Printing Infrastructure

Last week, [Danal Estes] passed away. This comes as a shock to many of us who had the pleasure of interacting with him online. Not only was [Danal] an active contributor to the 3D printing community, he was simply a warm-hearted character who was just fun to get along with. I met [Danal] online less than a year ago. But I owe him a debt in helping transform a set of design files that I posted online into a full blown community of hardware enthusiasts.

Here’s my best shot at recounting some of this fellow human’s legacy as seen from the fellow tool changing 3D printing enthusiasts who knew him.

Getting to Know an Online Community Builder

I first met [Danal] online last September through Thingiverse when he posted a make of Jubilee, a tool changing machine design that I posted a few weeks prior. At a time when Jubilee was just a set of files and instructions on the internet, I was stoked that someone in the world was out there building a duplicate. To get to know these people better and work out any pinch points in their assembly process, I started a Discord Chat Server. [Danal] was the first to join and start telling his story in pictures.

As a community of curious people on Discord grew, questions about the machine started to arise. How big was it? How did the tool changing work? I tried answering as many as I could, putting an FAQ blurb on Thingiverse, But a few weeks in, something else happened: [Danal] started answering the questions. Not only that, he was greeting nearly every single person who introduced themselves on the server. I didn’t understand the value of a simple “welcome aboard!” that follows someone’s first post in a budding online community, but [Danal] did. So he did just that. He made you feel welcome to have landed in this corner of the internet. In a world full of engineers who don’t like repeating themselves, [Danal] seemed to get that his repeat interaction was new for the person on the other end; and that made it worth doing.

Danal’s first tool changes

As the days passed, questions continued, and [Danal] continued to fill people in with answers to questions–even repeat questions. All the while, he posted progress pictures of his own machine. In a way, the rest of the community seemed to be holding their breath during this time, watching [Danal] post status reports; waiting for some conviction that these files actually turned into something that worked. Then, less than a month later, [Danal] posted a video of his first successful tool change. It did work! Almost certainly inspired by [Danal’s] success, a few more folks started building machines of their own. But [Danal] was the first person to duplicate a Jubilee.

More than twenty machines have been built in the wild since I posted the project files back in September. I believe that the inspiration to start draws from the success of people who have finished before, which chains down to the inspiration drawn from the success of the first person to finish: [Danal Estes]. I owe him one for that: for inspiring a community of folks to follow in this adventure.

Commoditized Automatic Nozzle Alignment

[Danal] did more than affirm the machine design to a new Jubilee community. Over the short span of the project, [Danal] put his software hat on and developed an automated machine-vision based tool alignment system that he called TAMV. It turns out that tool tip calibration is one of the gnarly problems for any multi-nozzle 3D printer. Tools must be aligned relative to each other such that each of the unique materials they print are aligned in the resulting print. The current ways of doing this are cumbersome and manual. Either you measure offsets by printing a vernier scale or by taking pictures with an upwards-facing microscope. [Danal] took this gnarly problem as an opportunity to automate the process completely, so he did.

In just two months, [Danal] returned with an announcement on the Jubilee Discord to present TAMV, aka: Tool Align Machine Vision. By mounting an upwards facing webcam to the front of his Jubilee, [Danal] simply ran his one-button script, and his machine automatically calibrated each available tool both automatically and better than most humans could with the prior methods. It did this by sequentially picking up tools, putting them in the camera field of view, and then measuring their offsets. What’s more, he released the entire code base as open-source, literally transforming a gnarly problem into a thing of the past with a commodity solution made usable with a simple installation script and setup instructions that he also wrote.

Here on Hackaday, it’s humbling to read about the amazing feats folks are overcoming all from the comfort of their home workbenches. But it’s invigorating to see that same feat unfolded in a way that lets us unpack it, learn from it, build on top of it. The act of documenting work you’ve already done with the intent that others could follow it is an act of grace. [Danal] was gracious.

A Shared Story Told in Projects

As [Danal] became one of the most active community members on Discord, we started to learn more about his other projects. For [Danal], 3D printers were as much a side project as they were tools in a family of other tools for creative projects. Armed with these machines, [Danal] put them to work on machines for flight, from extraordinary remote control aircraft (3D printed of course) that could barely work their wingspan through a doorway to the consoles of real world aircraft that could carry a pilot.

It was always a pleasure to get a slice of [Danal’s] adventures. Getting to hear about his excitement in projecting was food for a growing community of hobbyists eager to get back to our workbenches. And the framing of his adventures was warm enough to make you feel not just that you wanted a bit of this lifestyle for yourself, but that you could have it too. I hope that this part of [Danal’s] legacy is something that we online folk can continue: the shared courtesy and warm attitude to newcomers in a hardware hacking community.

Thanks, man; I already miss you.

Books You Should Read: The Design Of Everyday Things

With everything from APIs to Raspberry Pis making it even easier for us to create and share objects shaped by personal whim, it’s high time that Don Norman’s sage design advice falls on not just the design student, but the hardware hacker and DIY enthusiast too. Grab yourself a coffee and a free weekend, and settle into the psychology of people-struggling-how-to-use-that-widget-they-just-purchased in The Design of Everyday Things: Revised and Expanded Edition.

Who’s to blame for a door that opens with a pull when everything about how it looks says it should open with a push? In Don Norman’s world, it’s not you; its the designer. Enter a world where blame is inverted and mistakes can be critically categorized. Norman takes us example by example showing us how common items in the world poorly serve the needs of their user, mainly because the designer simply ignores key aspects of our humanity. This book is a crisp, concise overview of human psychology when applied to engaging with things combined with a language of ideas to help us apply this psychology to better interactions. (And it reads like butter!)

Opening Up to the Language of Design

What’s an affordance, you might ask? Well, simply put, it’s a way that an object can be used by a human. How about a signifier? That’s a communication “signposting” scheme that object uses to suggest to you how it should be used. If that sounds a bit fluffy, just think about the last time you tried to push open a door that needed to be pulled. Something about that door was suggesting that you could push it open, but it couldn’t! It “fooled” you because all the object’s signifiers were telling you otherwise. Continue reading “Books You Should Read: The Design Of Everyday Things”

Defocused Laser Welding Fabric Proves There’s Many Ways To Slice It

Laser cutters are certainly a Hackerspace staple for cutting fabrics in some circles. But for the few fabrics derived from non-woven plastics, why not try fusing them together? That’s exactly what [Dries] did, and with some calibration, the result is a speedy means of seaming together two fabrics–no needles necessary!

The materials used here are non-woven goods often used in disposable PPE like face masks, disposable aprons, and shoe coverings. The common tool used to fuse non-woven fabrics at the seams is an ultrasonic welder. This is not as common in the hackerspace tool room, but laser cutters may be a suitable stand-in.

Getting the machine into a production mode of simply cranking out clothes took some work. Through numerous sample runs, [Dries] found that defocusing the laser to a spot size of 1.5mm at low power settings makes for a perfect threadless seam. The resulting test pockets are quite capable of taking a bit of hand abuse before tearing. Best of all, the fused fabrics can simply be cut out with another pass of the laser cutter. For fixtures, [Dries] started with small tests by stretching the two fabrics tightly over each other but suggests fixtures that can be pressed for larger patterns.

It’s great to see laser-cutters doubled-up as both the “glue” and “scissors” in a textile project. Once we get a handle on lasering our own set of scrubs, why not add some inflatables into the mix?

Vinyl Cutter Migrates From Scrapbooks To Gaskets

We know it all too well: another smoothly-operating night in the garage easily halted by a broken component. In the late hours of the night, no hardware store will open its doors. And while waiting may reward the patient, creativity may reward those who act now. That’s exactly where [Justin] found himself one evening: with a torn gasket. Not to be dismayed, he turned to his fiancee [Amy] and the two of them managed to design and cut a perfectly fitting replacement gasket on [Amy’s] vinyl cutter in a  mere matter of minutes.

In the video after the break, the two step us through their process in detail. By starting with an image of the existing gasket, they capture a reference image. Some light work in photoshop cleans up everything except the resulting gasket they’re looking for. Finally, sizing “by eye” in the vinyl cutter’s software after measuring an existing dimension gives them sufficient precision to remake a duplicate gasket that’s eye-for-eye indistiguishable from the original.

It seems like we often hear about vinyl-cut gaskets in passing or in the comments, but it’s great to see a team post such a fabulous success story putting them to good use. And in case a plain old’ vinyl cutter blade wont do the trick, why not try running it at ultrasonic speeds?

Continue reading “Vinyl Cutter Migrates From Scrapbooks To Gaskets”

Turn By Wire Is A Machinist’s Sixth Sense

It’s hard not to be a little intimidated by the squeaks and whirs that come with your first journey into a machine shop. Here, skilled machinists pilot giant hunks of cast iron that turn metals into piles of chips to yield beautiful parts. But what if machine tools themselves didn’t have to seem so scary. What if using them could feel a bit more intuitive, even, dare we say, natural from the get-go?

Enter Turn by Wire, a unique set of force feedback and machine control concepts applied to a lathe brought to you by researchers [Rundong Tian], [Vedant Saran], [Mareike Kritzler], [Florian Michahelles], and [Eric Paulos] at Berkelely.

Turn by Wire vastly reimagines the relationship between a user’s control inputs and the machine outputs in two ways: (1) by changing the mapping between the hand cranks and machine movements and (2) by changing the haptic feedback felt by the machinist. Since both of these interactions can be defined programmatically, the researchers created three unique ways of interacting with the lathe. First, by defining a tool path in the graphic user interface (GUI), the machinist can use a single hand crank to step forward and back in time along that toolpath. Second, by applying virtual guidelines in the GUI, both the machine and the hand cranks will physically snap to the guide lines when they are sufficiently close. Finally, the hand cranks can be used to teach the machinist a technique by adding resistive forces into the hand cranks depending on movement while a machinist is stepping through a process like peck drilling.

This is a great example of [Tom Knight’s] “just wrap a computer around it!” as mentioned by [Bunnie Huang] when we featured the IQ Motor Modules. It’s a powerful example of how putting a computer between the controls and the machine can correct for real world imperfections, be they in the mechanics of the machine of the operator. For the curious, have a look at [Rundong’s] paper published at UIST and [Vedant’s] master’s thesis.

 

Continue reading “Turn By Wire Is A Machinist’s Sixth Sense”

Tangential Oscillating Cutting Knife Makes Parts From The Ups And Downs

If you thought using a utility knife manually was such a drag, you’re not alone. [luben111] took some initiative to take the wear and tear off your hands and put it into a custom machine tool they call TOCK, or Tangental Oscillating Cutting Knife. TOCK bolts onto your typical CNC router, giving it the ability to make short work of thin materials like cardboard. Rather than apply a constant downward pressure, however, TOCK oscillates vertically at high speeds, perforating the material while cutting through it at a respectable clip.

TOCK’s oscillations are driven by a radially symmetric cam mechanism, allowing the blade to completely pivot full circle while still performing the oscillations. While traditional inexpensive methods for bolting a blade to a CNC machine passively swivel along the path they’re directed, [luben111] has taken the generous extra step of powering that axis, commanding the blade to actively rotate in the cutting director with a custom script that converts PLT files to G-code. The net result is a tool that preserves a tremendous amount of detail in cumbersome thick materials, like cardboard. Best of all, the entire setup is documented on the Thingiverse with CAD files and light instructions. A few folks have even gone so far as to reproduce their own!

It’s great to see some dabbling in various disciplines to produce a working machine tool. As far as knives go, we’re starting to see a good spread of other utility knife augmentations and use cases, whether that’s a traditional CNC retrofit or a solid attempt at a homebrew ultrasonic mod.

Continue reading “Tangential Oscillating Cutting Knife Makes Parts From The Ups And Downs”

Jubilee: A Toolchanging Homage To 3D Printer Hackers Everywhere

I admit that I’m late to the 3D printing game. While I just picked up my first printer in 2018, the rest of us have been oozing out beautiful prints for over a decade. And in that time we’ve seen many people reimagine the hardware for mischief besides just printing plastic. That decade of hacks got me thinking: what if the killer-app of 3D printing isn’t the printing? What if it’s programmable motion? With that, I wondered: what if we had a machine that just offered us motion capabilities? What if extending those motion capabilities was a first class feature? What if we had a machine that was meant to be hacked?

One year later, I am thrilled to release an open-source multitool motion platform I call Jubilee. For a world that’s hungry for toolchanging 3D printers, Jubilee might be the best toolchanging 3D printer you can build yourself–with nothing more than a set of hand tools and some patience. But it doesn’t stop there. With a standardized tool pattern established by E3D and a kinematically coupled hot-swappable bed, Jubilee is rigged to be extended by anyone looking to harness its programmable motion capabilities for some ad hoc automation.

Jubilee is my homage to you, the 3D printer hacker; but it’s meant to serve the open-source community at large. Around the world, scientists, artists, and hackers alike use the precision of automated machines for their own personal exploration and expression. But the tools we use now are either expensive or cumbersome–often coupled with a hefty learning curve but no up-front promise that they’ll meet our needs. To that end, Jubilee is meant to shortcut the knowledge needed to get things moving, literally. Jubilee wants to be an API for motion.

Continue reading “Jubilee: A Toolchanging Homage To 3D Printer Hackers Everywhere”