Pulling Apart A Premium WebCam

Over at EDN, [Brian Dipert] has been tearing down web cameras. A few months ago, he broke into a bargain basement camera. This time, he’s looking into a premium unit. Although we have to admit from some of what he reports, we are a little surprised at some of the corners cut. For example, it’s a 4K camera that doesn’t quite provide a 4K image. Despite a Sony CMOS sensor, [Brian] found the low-light performance to be poor. However, it does carry a much larger price tag than the previous camera examined.

The interesting part is about half way down the page when he tries to open the unit up. It seems like it is getting harder and harder to get into things and this camera was no exception. The device finally gives up. Inside is a relatively unremarkable board with a host of unknown ICs. One interesting item is a gyro chip that determines if the camera is upside down.

[Brian] managed to get the camera back together with no harm. It is interesting to compare it to the $15 camera he took apart earlier.

If you want maximum cred, do your video calls with a Game Boy camera. Or, at least, add your own lens to a webcam.

Does Solar Energy Make Us Vulnerable?

Here’s a hypothetical situation. You decide to build your own steam generator plant and connect it to the electric grid. No matter where you live, you’d probably have to meet a ton of requirements from whoever controls your electric power, almost surely backed by your government. Yet, according to a recent post by [Bert], a version of this is going on in Europe and, probably, in many more places: unregulated solar power inverters driving the grid.

If you have just a few solar panels hanging around, that probably isn’t a problem. But there are a sizeable number of panels feeding power — and that number seems to grow daily — having control of the inverters could potentially allow you to limit the grid’s capacity or — if the inverters allowed it — possibly take the grid down by feeding power incorrectly back into the grid.

Continue reading “Does Solar Energy Make Us Vulnerable?”

Are You Using Your Calipers Wrong?

It used to be that calipers were not a common item to have in an electronics lab. However, smaller parts, the widespread use of 3D printers and machining tools, and — frankly — cheap imported calipers have made them as commonplace as an ordinary ruler in most shops. But are you using yours correctly? [James Gatlin] wasn’t and he wants to show you what he learned about using them correctly.

The video that you can see below covers digital and vernier calipers. You might think digital calipers are more accurate, in practice, they are surprisingly accurate, although the digital units are easier to read.

Continue reading “Are You Using Your Calipers Wrong?”

Pulling Hydrogen Out Of The Water

In theory, water and electric current will cause electrolysis and produce oxygen and hydrogen as the water breaks apart. In practice, doing it well can be tricky. [Relic] shows an efficient way to produce an electrolysis cell using a few plastic peanut butter jars and some hardware.

The only tricky point is that you need hardware made of steel and not zinc or other materials. Well, that and the fact that the gasses you produce are relatively dangerous.

Continue reading “Pulling Hydrogen Out Of The Water”

Remapping HID For Fun And… Well Fun

If you want to remap some mouse or keyboard keys, and you use Linux, it is easy. If you use Windows or another operating system, you can probably do that without too much trouble. But what if you use all of them? Or what if you don’t have access to the computer in question? Thanks to [jfedor2], you can reach for a Raspberry Pi Pico and make this handy key-and-mouse remapping hardware dongle.

Continue reading “Remapping HID For Fun And… Well Fun”

Learning How A Nuclear Missile Stays On Target

In 1962, unlike today, most things didn’t have computers in them. After all, the typical computer of the day was a fragile room-sized box that required a gaggle of high priests to service it. But the Minuteman I nuclear missile was stuffed full of pre-GPS navigation equipment and a computer. In a few years, by 1970, the Minuteman III could deliver a warhead 13,000 km with an accuracy of 200 meters. Each one cost about a half million dollars, but that’s almost five million in today’s money. [Ken] takes on a very detailed tour of the computers and avionics that were nothing short of a miracle — and a highly classified miracle — in the 1960s.

The inertial navigation relied on a gyroscope, which in those days, were large and expensive. The Minuteman I required alignment with a precise angle relative to the North Star which naturally wasn’t visible from inside the silo. By the time Minuteman II arrived, they’d figured out an easier way to orient the missiles.

Continue reading “Learning How A Nuclear Missile Stays On Target”

Machining Copper From Algaecide

We love it when we find someone on the Internet who has the exact same problem we do and then solves it. [Hyperspace Pirate] starts a recent video by saying, “Oh no! I need to get rid of the algae in my pond, but I bought too much algaecide. If only there were a way to turn all this excess into CNC machined parts.” OK, we’ll admit that we don’t actually have this problem, but maybe you do?

Algaecide is typically made with copper sulfate. There are several ways to extract the copper, and while it is a little more expensive than buying copper, it is cost-competitive. Electrolysis works, but it takes a lot of power and time. Instead, he puts a more reactive metal in the liquid to generate a different sulfate, and the copper should precipitate out.

Continue reading “Machining Copper From Algaecide”