Commodore 64 And Nintendo Make Beautiful Music Together With SYNCART

Cyncart

[Dan] has been hard at work developing CYNCART to get his Commodore 64 and original NES to play together. We’ve seen [Dan’s] handiwork before, and it’s pretty clear that he is serious about his chip tunes.

This project starts with something called a Cynthcart. The Cynthcart is a Commodore 64 cartridge that allows you to control the computer’s SID chip directly. In effect, it turns your Commodore 64 into a synthesizer. [Dan] realized that the Commodore’s user port sends out simple eight bit values, which happens to match perfectly with the NES’ controller ports. In theory, he should be able to get these two systems communicating with each other.

[Dan] first modified the Cynthcart to send data out of the user port on the Commodore. This data gets sent directly to the NES’ 4021 shift register chip in the second player controller port. The NES runs a program to turn this data into sound on the NES’ audio chip. The first player controller can then be used to modify some other sound settings on the NES. Musical notes are played on the Commodore’s keyboard. This setup can also be used to play music on both systems at the same time. Be sure to watch the video of the system in action below.

Continue reading “Commodore 64 And Nintendo Make Beautiful Music Together With SYNCART”

A Simple Commodore 64 Cart Dumper

c64

While [Rob] was digging around in his garage one day, he ran across an old Commodore 64 cartridge. With no ROM to be found online, he started wondering what was stored in this ancient device. Taking a peek at the bits stored in this cartridge would require dumping the entire thing to a modern computer, and armed with an Arduino, he created a simple cart dumper, capable of reading standard 8k cartridges without issue.

The expansion port for the C64 has a lot of pins corresponding to the control logic inside these old computers, but the only ones [Rob] were really interested in were the eight data lines and the sixteen address lines. With a little bit of code, [Rob] got an Arduino Mega to step through all the address pins and read the corresponding data at that location in memory. This data is then sent over USB to a C app that dumps everything in HEX and text.

While the ROM for just about every C64 game can be found online, [Rob] was unlucky enough to find one that wasn’t. It doesn’t really matter, though, as we don’t know if [Rob] has the 1541 disk drive that makes this cart useful. Still, it’s a good reminder of how useful an Arduino can be when used as an electronic swiss army knife.

An Emulated Commodore 64 Operating System For The Raspberry Pi

Commodore-PI

 

It’s no secret that Commodore users love their old machines with the Commodore C64 being chief among them with 27 Million units sold worldwide. Speaking as a former Commodore Business Machines (CBM) engineer the real surprise for us is the ongoing interest and devotion to an era typified by lumbering 8 bit machines and a color palette consisting of 16 colors. Come to think about it, that’s the description of Minecraft!

Jump forward to today and it’s a generation later. We find that the number of working units is diminishing as age and the laws of entropy and physics take their toll.

Enter the Commodore Pi, an emulated Commodore 64 operating system for the Raspberry Pi. The goals of the project include an HDMI and composite compatible video output, SID based sound, Sprites and other notable Commodore features. They also plan to have hooks for more modern technology to include Ethernet, GPIO and expansion RAM.

A video demo of the emulator can be found below. If you’re just warming up to the Commodore world, you’ll definitely want to know the real story behind the C128.

Continue reading “An Emulated Commodore 64 Operating System For The Raspberry Pi”

VCF East: PetPix, Streaming Images To A Commodore PET

PETaday

Thought the Vintage Computer Festival would just be really old computers with hundreds of people pecking 10 PRINT “HELLO” 20 GOTO 10? Yeah, there’s plenty of that, but also some very cool applications of new hardware. [Michael Hill] created PetPix, a video player for the Commodore PET and of course the C64.

PetPix takes any video file – or streaming video off a camera – and converts 8×8 pixel sections of each frame to PETSCII. All the processing is done on a Raspberry Pi and then sent over to the PET for surprisingly fluid video.

There is, of course, a video of PetPix available below. There are also a few more videos from [Michael] going over how PetPix works.

Continue reading “VCF East: PetPix, Streaming Images To A Commodore PET”

Behind the C128 Home Computer

Guest Post: The Real Story Of Hacking Together The Commodore C128

The most popular computer ever sold to-date, the Commodore C-64, sold 27 Million units total back in the 1980’s.  Little is left to show of those times, the 8-bit “retro” years when a young long-haired self-taught engineer could, through sheer chance and a fair amount of determination, sit down and design a computer from scratch using a mechanical pencil, a pile of data books, and a lot of paper.

Before Apple there was Commodore
Behind the C-128 from a 1985 Ad

My name is Bil Herd and I was that long-haired, self-educated kid who lived and dreamed electronics and, with the passion of youth, found himself designing the Commodore C-128, the last of the 8-bit computers which somehow was able to include many firsts for home computing. The team I worked with had an opportunity to slam out one last 8 bit computer, providing we accepted the fact that whatever we did had to be completed in 5 months… in time for the 1985 Consumer Electronics Show (CES) in Las Vegas.

We (Commodore) could do what no other computer company of the day could easily do; we made our own Integrated Circuits (ICs) and we owned the two powerhouse ICs of the day; the 6502 microprocessor and the VIC Video Display IC.  This strength would result in a powerful computer but at a cost; the custom IC’s for the C-128 would not be ready for at least 3 of the 5 months, and in the case of one IC, it would actually be tricked into working in spite of itself.

Continue reading “Guest Post: The Real Story Of Hacking Together The Commodore C128”

Commodore 64 Power Glove Is So Bad

The Nintendo Power Glove was terrible. Really, really terrible. Thanks to modern components, though, it’s possible to recreate the Power Glove experience in a way that doesn’t suck so much. That’s what [Leif] did with his motion sensing glove for the Commodore 64.

Instead of rolling his own IMU and putting it in a glove, [Leif] is using SonicWear SoMo, a glove originally designed to generate MIDI data for performance pieces. Inside this glove is a 9 DOF gyro/accelerometer/magnetometer, uC, battery, and XBee that can be easily reprogrammed to do something a little more (or less) useful than simply sending MIDI notes and commands.

[Leif] reprogrammed the XBees to use I/O line passing instead of sending serial data, and connected the recieving XBee to the C64 joystick port through a very simple circuit with a hex inverter.

All the code to turn a SonicWear glove into a C64 controller is available on the Github, and there’s a neat demo video of [Leif] demoing his glove at the VCF Midwest late last month.

Testing DRAM From A Commodore 64

dram

A few months ago, [Josh] was given an old Commodore 64. He needed to make an AV cable and find a new power supply, and even after testing these new parts out, [Josh] found it still wouldn’t boot. Not one to look a gift horse in the mouth — or perhaps he enjoys the challenge — he set out on restoring a thirty year old circuit board.

He replaced a few chips and the caps, but found he had no way to test the DRAM chips. Compared to SRAM or Static RAM used by other computers of the era, DRAM is a bit harder to interface, requiring a capacitor in each memory cell to be refreshed a few dozen times every second. With a bit of help from his good friend [CNLohr], [Josh] figured out a circuit to read and write to his chips and build a small board based on the ATmega8U2 microcontroller for testing purposes.