Underwater Sensor Takes Single Pair Ethernet For A Dip

The 10BASE-T1 Ethernet standard is also known as ‘single pair Ethernet’ (SPE), as it’s most defining feature is the ability to work over a single pair of conductors. Being fairly new, it offers a lot of advantages where replacing existing wiring is difficult, or where the weight of the additional conductors is a concern, such as with the underwater sensor node project that [Michael Orenstein] and [Scott] dreamed up and implemented as part of a design challenge. With just a single twisted pair, this sensor node got access to a full-duplex 10 Mbit connection as well as up to 50 watts of power.

The SPE standards (100BASE-T1, 1000BASE-T1 and NGBASE-T1) 10BASE-T1 can do at least 15 meters (10BASE-T1S), but the 10BASE-T1L variant is rated for at least 1 kilometer. This makes it ideal for a sensor that’s placed well below the water’s surface, while requiring just the single twisted pair cable when adding Power over Data Lines (PoDL). Whereas Power-over-Ethernet (PoE) uses its own dedicated pairs, PoDL piggybacks on the same wires as the data, requiring it to be coupled and decoupled at each end.

Continue reading “Underwater Sensor Takes Single Pair Ethernet For A Dip”

Capacitive Rainmeter Measures The Sky Water Just Fine

If you’ve got a smart home, or you just want to know how soaked your garden is getting in the winter, you might want to measure rainfall. There are a bunch of ways to go about it, and this capacitive rainmeter solution from [Magnus Thome] might just be the perfect solution you’re looking for.

Like many who came before, [Magnus] had experimented with traditional resistive-based sensors using copper traces to measure water levels. As the soil moisture measuring set learned as well, corrosion tends to promise a pretty short life for these designs. Capacitive sensors, on the other hand, can be isolated from the water itself, and thus sense the levels without being subject to such degradation.

[Magnus] pairs the off-the-shelf capacitive sensor with an ESP32 charged with reading it and reporting back to Home Assistant. It’s also outfitted with a heater to keep it at a constant temperature to avoid it freezing over during those cold and snowy Swedish winters.

It’s a tidy way to integrate a quality commercial sensor with a DIY smart home setup. If you’ve been whipping up your own neat sensor networks for your smart home, don’t hesitate to let us know. Video after the break.

Continue reading “Capacitive Rainmeter Measures The Sky Water Just Fine”

Smart Coffee Replaces Espresso Machine Controller With Arduino, Sensors

A common hacker upgrade to an espresso machine is to improve stability and performance with a better temperature controller, but [Schematix]’s Smart Coffee project doesn’t stop there. It entirely replaces the machine’s controller and provides an optional array of improvements for a variety of single-boiler machines (which is most of them).

Smart Coffee isn’t free, it costs 16 NZD (about 10 USD) but there is a free demo version. There is no official support, but there are wiring guides and sources aplenty from which to purchase the various optional parts. It runs on an Arduino MEGA 2560 PRO (or similar microcontroller) and supports a wide array of additional hardware including pressure transducer, water level sensor, flow meter, OLED display, and more.

Modification of one’s espresso machine is a rewarding endeavor, but the Smart Coffee project provides a way for one to get straight to the hacking and function modifying, instead of figuring out the wiring hardware interfacing from scratch.

We’ve seen [Schematix]’s work before with a DIY induction heater which showed off thoughtful design, and it’s clear he takes his coffee at least as seriously. Check out the highly comprehensive overview and installation video for Smart Coffee, embedded just below the page break.

Continue reading “Smart Coffee Replaces Espresso Machine Controller With Arduino, Sensors”

Automated Drip Watering Device Keeps Plants Happy

Plants tend to need a regular supply of water to stay happy. If you’re a green thumb, it’s one of the primary things you should take care of before you go on holiday. This DIY plant watering system from [Jaychouu] offers to handle just that.

The system consists of a soda bottle acting as a water container, and an electronically-controlled valve to control the flow of water to plants. Irrigation of the plants is via dripper nozzles to provide a small but consistent feed to the plants. The use of drippers tends to disturb the soil less than pressurized jets of water. A soil humidity sensor is used to detect moisture levels and avoid over-watering. There’s also a capacitive water level sensor that fires off a warning when the reservoir’s water level is low. An ESP32 serves as the brains of the operation, allowing remote control via Blynk.

If you’re looking for a simple way to drip water your plants while you’re away, it’s hard to go wrong with this concept. If you feel like a more passive solution though, we’ve seen other viable methods too.

Continue reading “Automated Drip Watering Device Keeps Plants Happy”

Get Clear Insights Into Cloudy Water With The Open Colorimeter

A basic scientific tool for chemistry and biology is a colorimeter device used to measure which wavelengths of light a particular sample solution absorbs. Some applications of colorimeters are measuring pH or chlorine levels, measuring pollutants, such as oil or pesticides, and, in some cases, can even be used to measure RNA/DNA concentrations. Even most washing machines today have a specialized colorimeter sensor, of sorts, to measure turbidity (cloudiness) to provide feedback on the cleaning process. To help in building your home scientific lab, [IORodeo] has released an Open Colorimeter.

A blown out diagram of the Open Colorimeter showing the 3d enclosure, the PyBadge, the LED board and sensor along with text describing each element

The Open Colorimeter is a self-contained device that accepts cuvettes filled with liquids for testing. The basic structure is an LED mounted onto a board that shines through the cuvette filled with a sample that is then measured at the other end by a TSL2591 color sensor. The Open Colorimeter has separate specialized LED boards for a range of wavelengths from 470nm to 630nm and incorporates a PyBadge that serves as the main microcontroller, as well as display and input.

[IORodeo] has done extensive documentation on the assembly, usage, and testing of the device. They have also provided protocols for the measurement of Ammonia, Nitrate, Nitrite, and Phosphates in addition to providing resources for absorption profiles of many other substances. All files relating to the 3D enclosure, firmware source code, schematics and Gerbers are provided under an open source hardware compatible license. For those not wanting to build it themselves, [IORodeo] is offering them for sale.

This isn’t the first time we’ve featured colorimeters, with some building a DIY version and others using it in a Tricorder project. The Open Colorimeter is a nice addition to this list and is ready for hacking and extending!

A display in a field showing the water stress index over time

Hackaday Prize 2022: Using Infrared Thermometers To Measure Crops’ Water Stress

If you live anywhere on the Northern Hemisphere, you’re likely to have experienced one of the many heatwaves that occurred this summer. Extreme heat is dangerous for humans and animals, but plants, including important crops, also suffer. High temperatures lead to increased transpiration and evaporation, and if the water lost in this way is not replenished quickly enough, plants will stop growing and eventually wither and die.

In order to keep track of the amount of water available to crops, [Florian Ellsäßer] built the Crop Water Stress Sensor: a device that checks whether plants have enough moisture available to stay healthy. It does this by measuring the temperature of the leaves to calculate evaporation levels. If the leaves are cooler than their surroundings, this means that water is evaporating from them and the plant apparently has enough water available. If the leaves’ temperature is closer to the ambient temperature, then the plant may be running low on water.

[Florian]’s system performs this measurement using an infrared array, which is basically a low-resolution thermal camera that remotely measures the temperature of everything in its field of view. This IR array is pointed at a field, where it will see both leaves and the ground between them. The difference in temperature between these two can then be used to calculate the Crop Water Stress Index (CWSI), a standardized measure of how well-hydrated plants are. The result is shown on a display and also indicated using a convenient red-yellow-green status LED that shows if the crops in question need watering.

The system can be solar powered for completely remote operation, while its data can be read out through a WiFi interface. [Florian] is planning to update the design with a LoRa interface for greater range: the eventual goal is to build a large network of these sensors throughout agricultural areas and use the combined data to raise awareness of water shortages in certain areas. In order to make the sensors easy to build by anyone interested, all design files are available on the project page.

Keeping crops moisturized is one of the key tasks of agriculture, and we’ve seen several projects that aim to optimize and automate it, from a simple-but-effective ESP8266-based moisture sensor to complete hydroponics systems.

Watering The Garden With A Solar-Powered System

Watering the garden is important to do regularly if you want your plants to thrive. [Nikodem Bartnik] built a system to handle it for him, keeping his garden on the grow.

The system has an Arduino commanding an irrigation system based around a pump delivering water from a reservoir. It’s paired with a water level sensor to keep an eye on the water available to the system. Moisture sensors are also used to monitor the prevailing soil conditions, to ensure the plants aren’t over- or under-watered. In this case, [Nikodem] designed his own resistive moisture sensors, which proved difficult but taught him a lot along the way. verything was then wrapped up in a food container to make it waterproof for installation outside. A solar panel and charging system was also installed to power the whole setup without requiring a mains connection.

While this system worked, the moisture sensors were a bit unreliable and there was a lot of cabling involved. A second revision got rid of the sensors and used a Pi Pico to implement a simple timer-based irrigation scheme.

Either way, both systems worked and helped keep the vital water flowing to the garden bed. Automatic plant watering is a bit of a popular theme around here, and we’ve seen some nifty hacks in that realm of late. Video after the break.

Continue reading “Watering The Garden With A Solar-Powered System”