Wire Wrap Odyssey: A 7400-series Homebrew 8-bit Computer

The Wire Wrap Odyssey's first Hello World from the CPU module, here hooked up to a logic analyzer in July of 2020. (Credit: Paul Krizak)
The Wire Wrap Odyssey’s first Hello World from the CPU module, here hooked up to a logic analyzer in July of 2020. (Credit: Paul Krizak)

As part of his computer science curriculum at Texas A&M University in the early 2000s, [Paul Krizak] took a computer architecture course on the basics of their functioning. This and being exposed to dozens of homebuilt computer projects inspired him to begin building his own 8-bit computer in 2010, which eventually grew into the Wire Wrap Odyssey. This name covers both the primary construction method chosen around 2019 in the form of wire-wrapped connections, as well the harrowing journey to reach this point with a functioning computer system despite many choices and setbacks.

The Odyssey CPU is an 8-bit microcoded design with 16-bit address bus, using mostly 74HC-series logic. A VGA graphics card is also part of the design, which can output a 640×480 text display, with character glyphs read from the system ROM (32 kB AT28C256). As for the RAM, this is an extravagant 32 kB dual-port SRAM (Renesas 7007), which also allows both the CPU and video card to use the same SRAM. Currently the system has four peripherals: a PS/2 keyboard controller, an RTC and timer (DS1511Y+), 82C52 UART and 1 MB of extended RAM, but an ATA port and parallel port are in development.

Perhaps the most impressive part about this product is the level of documentation, from the early stages including paper doodles to the current state of the system, including the GitHub repository for the software. [Paul] was also an exhibitor at the Vintage Computing Festival (VCF) SoCal recently with his Wire Wrap Odyssey, where he was able to show off the progress so far. Next year he hopes to visit VCF SoCal again, with the remaining planned peripherals implemented.

Blast From The Past: Schematic Templates

If you want to draw schematics today, you probably sit down at your computer. Why not? There are a ton of programs made to do the work easily, and the results look great. Back in the day, you might sit at a drafting table with a full set of T-squares, triangles, and maybe a Leroy. But what about when inspiration struck at the coffee shop (no, not a Starbucks in those days)? Well, you probably had a schematic drawing template. We were surprised you can still buy these at high prices. Or you can 3D print your own, thanks to [Jan Stech].

Templates of all kinds used to be very common. There were several for schematics, logic symbols, furniture, and even geometric shapes and curves. They were almost always green and transparent. A quick search on Amazon for “drafting template” shows you can still get the generic templates, but schematic ones are still expensive.

Continue reading “Blast From The Past: Schematic Templates”

Wireless Telescope Guidance You Can Build On The Cheap

Telescopes are fun to point around the sky, but they’re even better when you have some idea of what you’re actually looking at. Experienced sky-gazers love nothing more than whipping out some quality glassware and pointing it to the heavens to try and view some photons from some fancy celestial point of interest. To aid your own endeavors in this realm, you might consider following [aeropic’s] example in building a capable wireless telescope DSC.

Yes, [aeropic] built a capable digital setting circle (DSC) which can be used to quickly point a telescope at objects in the sky, with the aid of the right astronomical software. An ESP32 board runs the show, using AS5600 positional encoders on each axis of the telescope to understand the device’s orientation. The encoders are attached via 3D-printed components to track the motion of the telescope accurately. It can then be paired over Bluetooth with a smartphone running an app like Skysafari. Once calibrated on some known stars, the app can then read the encoder outputs from the telescope, and help guide the user to point the device at other stars in the night sky.

The rig won’t actually move the telescope for you, it just guides you towards what you want to look at. Even still, it makes finding points of interest much faster and could help you get a lot more out of your next sky viewing party. Have fun out there! Video after the break.

Continue reading “Wireless Telescope Guidance You Can Build On The Cheap”

3D-Printed Automated Development Tank For Classic Photo Films

[packetandy] had a problem. He was still into classic analog photography, but local options for development were few and far between. After some frustration, he decided to take on the process himself, creating an automatic development tank for that very purpose.

For black and white film, developing is fairly straightforward, if dull and time consuming. The film requires constant agitation during development, which can be dull to do by hand. To get around this, [packetandy] decided to build a development tank rig that could handle agitation duties for him by wiggling the film around in his absence.

The tank itself is created by Patterson, and has a stick on top for agitating the film inside. The rig works by attaching a NEMA stepper motor to this stick to jerk it around appropriately. Rather than go with a microcontroller and custom code, [packetandy] instead just grabbed a programmable off-the-shelf stepper controller that can handle a variety of modes. It’s not sophisticated, but neither is the job at hand, and it does just fine.

It’s a nifty build that should see [packetandy]’s black-and-white photography on the up and up. Meanwhile, if simple development isn’t enough for you, consider diving into the world of darkroom robot automation if you’re so inclined!

Underwater Sensor Takes Single Pair Ethernet For A Dip

The 10BASE-T1 Ethernet standard is also known as ‘single pair Ethernet’ (SPE), as it’s most defining feature is the ability to work over a single pair of conductors. Being fairly new, it offers a lot of advantages where replacing existing wiring is difficult, or where the weight of the additional conductors is a concern, such as with the underwater sensor node project that [Michael Orenstein] and [Scott] dreamed up and implemented as part of a design challenge. With just a single twisted pair, this sensor node got access to a full-duplex 10 Mbit connection as well as up to 50 watts of power.

The SPE standards (100BASE-T1, 1000BASE-T1 and NGBASE-T1) 10BASE-T1 can do at least 15 meters (10BASE-T1S), but the 10BASE-T1L variant is rated for at least 1 kilometer. This makes it ideal for a sensor that’s placed well below the water’s surface, while requiring just the single twisted pair cable when adding Power over Data Lines (PoDL). Whereas Power-over-Ethernet (PoE) uses its own dedicated pairs, PoDL piggybacks on the same wires as the data, requiring it to be coupled and decoupled at each end.

Continue reading “Underwater Sensor Takes Single Pair Ethernet For A Dip”

Joost Bürgi And Logarithms

Logarithms are a common idea today, even though we don’t use them as often as we used to. After all, one of the major uses of logarithms is to simplify computations, and computers do that just fine (although they might use logs internally). But 400 years ago, doing math was painful. Enter Joost Bürgi. According to [Welch Labs], his book of mathematical tables should have changed math forever. But it didn’t.

If you know how a slide rule works, you’ll find you already know much of what the video shows. The clockmaker was one of the people who worked out how logs could simplify many difficult equations. He created a table of 23,030 “red and black” numbers to nine digits. Essentially, this was a table of logarithms to a very unusual base: 1.0001.

Why such a strange base? Because it allowed interpolation to a higher accuracy than using a larger base. Red numbers are, of course, the logarithms, and the black numbers are antilogs. The real tables are a bit hard to read because he omitted digits that didn’t change and scaled parts of it by ten (which was changed in the video below to simplify things). It doesn’t help, either, that decimal points hadn’t been invented yet.

What was really impressive, though, was the disk-like construct on the cover of the book. Although it wasn’t mentioned in the text, it is clear this was meant to allow you to build a circular slide rule, which [Welch Labs] does and demonstrates in the video.

Unfortunately, the book was not widely known and Napier gets the credit for inventing and popularizing logarithms. Napier published in 1614 while Joost published in 1620. However, both men likely had their tables in some form much earlier. However, Kepler knew of the Bürgi tables as early as 1610 and was dismayed that they were not published.

While we enjoy all kinds of retrocomputers, the slide rule may be the original. Want to make your own circular version? You don’t need to find a copy of this book.

Continue reading “Joost Bürgi And Logarithms”

Big Chemistry: Hydrofluoric Acid

For all of the semiconductor industry’s legendary reputation for cleanliness, the actual processes that go into making chips use some of the nastiest stuff imaginable. Silicon oxide is comes from nothing but boring old sand, and once it’s turned into ultrapure crystals and sliced into wafers, it still doesn’t do much. Making it into working circuits requires dopants like phosphorous and boron to give the silicon the proper semiconductor properties. But even then, a doped wafer doesn’t do much until an insulating layer of silicon dioxide is added and the unwanted bits are etched away. That’s a tall order, though; silicon dioxide is notoriously tough stuff, largely unreactive and therefore resistant to most chemicals. Only one substance will do the job: hydrofluoric acid, or HFA.

HFA has a bad reputation, and deservedly so, notwithstanding its somewhat overwrought treatment by Hollywood. It’s corrosive to just about everything, it’s extremely toxic, and if enough of it gets on your skin it’ll kill you slowly and leave you in agony the entire time. But it’s also absolutely necessary to make everything from pharmaceuticals to cookware, and it takes some big chemistry to do it safely and cheaply.

Continue reading “Big Chemistry: Hydrofluoric Acid”