2025 Component Abuse Challenge: The Slip Ring In Your Parts Bin

If you’re familiar with electrical slip rings as found in motors and the like you’ll know them as robust assemblies using carefully chosen alloys and sintered brushes, able to take the load at high RPM for a long time. But not all slip ring applications need this performance. For something requiring a lot less rotational ability, [Luke J. Barker] has something from his parts bin, and probably yours too. It’s an audio jack.

On the face of it, a 1/4″ jack might seem unsuitable for this task, being largely a small-signal audio connector. But when you consider its origins in the world of telephones it becomes apparent that perhaps it could do so much more. It works for him, but we’d suggest if you’d like to follow his example, to use decent quality plugs and sockets.

This is an entry in our 2025 Component Abuse Challenge, and we like it for thinking in terms of the physical rather than the electrical. The entry period for this contest will have just closed by the time you read this, so keep an eye out for the official results soon.

A man's hands are shown holding a microphone capsule with a 3D-printed part on top of it, with a flared metal tube protruding from the plastic.

2025 Component Abuse Challenge: Playing Audio On A Microphone

Using a speaker as a microphone is a trick old enough to have become common knowledge, but how often do you see the hack reversed? As part of a larger project to measure the acoustic power of a subwoofer, [DeepSOIC] needed to characterize the phase shift of a microphone, and to do that, he needed a test speaker. A normal speaker’s resonance was throwing off measurements, but an electret microphone worked perfectly.

For a test apparatus, [DeepSOIC] had sealed the face of the microphone under test against the membrane of a speaker, and then measured the microphone’s phase shift as the speaker played a range of frequencies. The speaker membrane he started with had several resonance spikes at higher frequencies, however, which made it impossible to take accurate measurements. To shift the resonance to higher frequencies beyond the test range, the membrane needed to be more rigid, and the driver needed to apply force evenly across the membrane, not just in the center. [DeepSOIC] realized that an electret microphone does basically this, but in reverse: it has a thin membrane which can be uniformly attracted and repelled from the electret. After taking a large capsule electret microphone, adding more vent holes behind the diaphragm, and removing the metal mesh from the front, it could play recognizable music.

Replacing the speaker with another microphone gave good test results, with much better frequency stability than the electromagnetic speaker could provide, and let the final project work out (the video below goes over the full project with English subtitles, and the calibration is from minutes 17 to 34). The smooth frequency response of electret microphones also makes them good for high-quality recording, and at least once, we’ve seen someone build his own electrets. Continue reading “2025 Component Abuse Challenge: Playing Audio On A Microphone”

Hackaday Links Column Banner

Hackaday Links: November 9, 2025

We’re always a wee bit suspicious about articles that announce some sort of “World’s first” accomplishment. With a couple of hundred thousand years of history, most of which wasn’t recorded, over which something like 117 billion humans have lived, any claims of primacy have to be taken with a grain of salt. So when the story of the world’s first instance of a car being hit by a meteorite came across our feed, we had to check it out. The car in question, a Tesla, was being driven in South Australia by veterinarian Andrew Melville-Smith when something suddenly crashed into its windshield.

Continue reading “Hackaday Links: November 9, 2025”

2025 Component Abuse Challenge: Dawg Gone LED Tester

The Hackaday 2025 Component Abuse Challenge is all about abusing electronic components in the service of making them do things they were never intended to. It’s not the 2025 Food Abuse Challenge, so in the case of [Ian Dunn]’s hot dog pressed into service as an LED tester, we’ll take the ‘dawg to be a component in its own right. And by any measure, it’s being abused!

Cooking hot dogs by passing an electric current through them has a long and faintly hazardous history to it — we’re sure we’ve heard of domestic hot dog cooker appliances that are little more than the mains supply on a pin at each end of a hot dog shaped receptacle. This one takes the ‘dawg in a bun with condiments, no less, and sticks an ordinary table fork wired up to the grid in each end. The LED testing is the cherry on the cake, because he simply sticks a pile of LEDs by their pins into the tasty sausage. It forms a crude potential divider, so there’s about enough volts across the gap between pins to light it up nicely.

We like this project on so many levels, though we’re not sure what heavy metals would leach out of those LED pins into the meat. If it’s inspired you to do something similar you still have a few days in which to enter the contest, so break out your convenience food and a pile of parts, and start experimenting!

The two types of LED candle, side by side.

2025 Component Abuse Challenge: Heat Activated LED Candles

[Miroslav Hancar] wasn’t satisfied with abusing just a single component for our Component Abuse Challenge. He decided to abuse a whole assembly, in particular, some LED candles.

In this project, LEDs are abused as temperature sensors. When the temperature gets hot enough for long enough, the microcontroller will turn on its LEDs. How? A diode’s forward voltage is temperature-related. By monitoring the forward voltage, the microcontroller can infer the temperature and respond appropriately.

This particular project is really two projects in one, centered around a common theme, heat activation. The first version has four LEDs and, in response to heat, four LEDs flicker to simulate a real candle. The second version is also heat-activated, but it has only one LED. You can snuff out this LED by pinching the top of it with your fingers. You can see a demo of each version in the videos below.

Continue reading “2025 Component Abuse Challenge: Heat Activated LED Candles”

2025 Component Abuse Challenge: Glowing Neon From A 9 V Relay

Most of us know that a neon bulb requires a significant voltage to strike, in the region of 100 volts. There are plenty of circuits to make that voltage from a lower supply, should you wish to have that comforting glow of old, but perhaps one of the simplest comes from [meinsamayhun]. The neon is lit from a 9-volt battery, and the only other component is a relay.

What’s going on? It’s a simple mechanical version of a boost converter, with the relay wired as a buzzer. On each “off” cycle, the magnetic field in the coil collapses, and instead of being harvested by a diode as with a boost converter, it lights the neon. Presumably, the neon also saves the relay contacts from too much wear.

We like this project for its simplicity and for managing to do something useful without a semiconductor or vacuum tube in sight. It’s the very spirit of our 2025 Component Abuse Challenge, for which there is barely time to enter yourself if you have something in mind.

A photo of a hand holding the inductor coil

2025 Component Abuse Challenge: Using Inductors To Steal Power From Qi Wireless Charging Base Station

Over on Hackaday.IO our hacker [bornach] has his entry into the Component Abuse Challenge: Inductors are Wireless Power Sources.

Some time back [bornach] was gifted a Qi wireless charging base station but didn’t own any compatible devices. He had a dig around in his junk box for inductors to attempt coupling to the wireless charger and lucked out with an inductor salvaged from his old inkjet printer.

There are actually open standards, known as the Qi standards, for how to negotiate power from a Qi device. But [bornach] ignored all of that. Instead he leveraged the fact that the Qi base station will periodically send out a “ping” containing a small measure of power to let compatible devices know that it’s available for negotiation. It is the energy in this “ping” that power’s [bornach]’s circuit!

In [bornach]’s circuit a TL431 provides a regulated five volt supply which can be used to drive a microcontroller and a charliplexed array of ten LEDs. Pretty nifty stuff. If you’re new to wireless charging you might like to know How Wireless Charging Works And Why It’s Terrible. Continue reading “2025 Component Abuse Challenge: Using Inductors To Steal Power From Qi Wireless Charging Base Station”