Tearing Down An Ultrasound Machine From 1963

hehsiemens

Vintage electronics are awesome, and old medical devices doubly so. When [Murtaugh] got his hands on an old ultrasound machine, he knew he had to tear it apart. Even if he wasn’t able to bring it back to a functional state, the components inside make for great history lesson fifty years after being manufactured.

This very primitive ultrasound machine was sold by Siemens beginning in 1963 as a, “diagnostic ultrasound unit for the quick evaluation of cerebral hemorrhage after accidents.” This is barely into the era of transistors and judging from [Murtaugh]’s teardown, nearly the entire device is made of vacuum tubes, capacitors, and resistors. The only solid state component in this piece of equipment is a bridge rectifier found in the power supply. Impressive stuff, even today.

In the end, [Murtaugh] decided this device wasn’t worth repairing. There were cracks all the way through a PCB, and he didn’t have any of the strange proprietary accessories anyway. Still, this junkyard score netted [Murtaugh] a bunch of old tubes and other components, as well as a nifty CRT that came with a wonderful ‘Made in West Germany’ label,.

AquaTop: A Gaming Touch Display That Looks Like Demon Possessed Water

AquaTop_touch_displayAre you ready to make a utility sink sized pool of water the location of your next living room game console? This demonstration is appealing, but maybe not ready for widespread adoption. AquaTop is an interactive display that combines water, a projector, and a depth camera.

The water has bath salts added to it which turn it a milky white. This does double duty, making it a reasonably reflective surface for the projector, and hiding your hands when below the surface. The video below shows several different games being played. But the most compelling demonstration involves individual finger tracking when your digits break the surface of the water (show on the right above).

There is also a novel feedback system. The researchers hacked some speakers so they could be submerged in the tank, adding a large speaker with LEDs on it in the same manner. When fed a 50 Hz signal they make the surface of the pool dance.

Continue reading “AquaTop: A Gaming Touch Display That Looks Like Demon Possessed Water”

Preserve Your Garden Bounty With A Solar Food Drier

solar-food-drier

The [VelaCreations] family lives off the grid, getting the electricity that they actually use from solar and wind power. When they started looking for ways to preserve the fruit and vegetables now coming into harvest the electricity consumption and cost of a food dehydrator made them balk. What they do have plenty of at this time of year is sun and heat, so they built their own solar food drier.

The frame is made of welded square tube. They mention that you will have to alter it if you don’t have welding tools, but building your own MOT welder is just one more fun project to take on. The frame has wood rails to hold the trays of food. It is enclosed with translucent polycarbonate sheets. There is a vent in the top as well as the bottom. As the heat from the sun builds inside, it flows upward, sucking fresh air in the bottom. This carries away moisture from the food and can be regulated by adjusting the size of the bottom vent.

Motorized Skateboard Controlled By Hand Gestures

hand-gesture-skateboard

This rough-looking contraption is a hand gesture controlled skateboard which [Aditya] built using parts on hand. So far the sensor for hand gestures is connected by a control wire, but he hopes to transition to an RF unit at some point in the future.

Having access to a couple of high torque brushless motors is what turned him onto the project. He hit up a couple of Mechanical Engineer friends of his to help assemble the chassis and then started on the electronics side of things. A breakout board for an ATmega16 is mounted on the corner of the deck. It monitors an accelerometer which acts as steering as well as throttle. The accelerometer had been abused in a previous project so he had to add an extra switch to bolster his available inputs. We were glad to hear that he also included a kill switch, since putting the control of those motors in the hands of a damaged accelerometer is a bit sketchy.

We remember seeing a similar trike design a few years back. That one powered a single rear wheel while this one powers two wheels and uses a caster for the third.

Here Be Dragons, And VR…and Sheep.

dragonVR

This may qualify less as a hack and more as clever combination of video game input devices, but we thought it was well worth showing off. [Jack] and his team built Dragon Eyes from scratch at the 2013 Dundee Dare Jam. If you’re unfamiliar with “Game Jams” and have any aspirations of working in the video game industry, we highly recommend that you find one and participate. With only 48 hours to design, code, build assets and test, many teams struggle to finish their entry. Dragon Eyes, however, uses the indie-favorite game engine Unity3D to smoothly coordinate its input devices, allowing players to experience dragon flight. The Kinect reads the player’s arm positions (including flapping) to direct the wings for travel, while the Oculus Rift performs its usual job as immersive VR headgear.

Combining a Kinect and a Rift isn’t particularly uncommon, but the function of the microphone is. By blowing into a headset microphone, players activate the dragon’s fire-breathing. How’s that for interactivity? You can see [Jack] roasting some sheep in a demonstration video below. If you have a Kinect and Rift lying around and want some first-person dragon action, [Jack] has kindly provided a download of the build in the project link above.

We’re looking forward to more implementations of the Rift; we haven’t seen many just yet. You can, however, check out a Rift used as an aerial camera on a drone.

Continue reading “Here Be Dragons, And VR…and Sheep.”

A Deck Screw Extruder

deck

A lot of great ideas happen in the middle of the night, and for [Werner] it’s no different. One night he came up with an idea for a new 3D printer extruder, and after a very basic prototype, we’d have to say he might be on to something. It’s basically a deck screw acting as a worm gear to drive filament, but this simple idea has a lot of really cool advantages.

There are two really interesting features of this extruder, should [Werner] ever decide to flesh out his idea into a real prototype. First, the stepper motor for this extruder can be extremely small and mounted directly above the extruder. This opens up the doors to easily creating multi-extrusion printers that can handle more than one filament. Secondly, using a deck screw as a worm gear means there is a huge area of contact between the plastic filament and the driver gear.

Whereas the usual extruder setup only makes contact with the plastic filament along one or two splines of a hobbed bolt, [Werner]’s design drives the filament along the entire length of the deck screw worm gear. This could easily translate into much more accurate extrusion without all the fiddling around with springs and hobbed bolts today’s extruders have.

In any event, it’s a very interesting idea, and we’d love to see [Werner] or someone else make a functioning extruder with this design.

One Pixel Video Game Rises From RGB Button Hardware

rgb-button-one-pixel-video-game

This project was completely component driven. [Christopher] and [Robert] wanted to try out buttons with an RGB backlight option. They found the one shown above, which looks fantastic. It should since it costs over twenty bucks in single units. What they came up with is a one pixel video game that works like a color matching version of Simon Says. The button will show you the target color for just a moment. The player then holds the button as it fades through colors. Releasing it at the right instant will produce a green flash, a wrong shade results in a red flash.

They went with an Arduino Mega for the project as that was within easy reach. A hunk of protoboard is used as a shield, it includes the button itself, connected through some current limiting resistors to the pins that drive the LED. There is also a tactile switch which actuates the AVR’s reset pin.

When trying to get the LED to fade through the full range of colors [Christopher] was hit with a common problem. Since our eyes don’t detect changes in low and high intensity light the same way, you can’t use linear changes in PWM and get a smooth result. He fixed this by using Gaussian curves to set the intensity levels.

Continue reading “One Pixel Video Game Rises From RGB Button Hardware”