2G Or Not 2G, That Is The Question

Since the very early 1990s, we have become used to ubiquitous digital mobile phone coverage for both voice and data. Such has been their success that they have for many users entirely supplanted the landline phone, and increasingly their voice functionality has become secondary to their provision of an always-on internet connection. With the 5G connections that are now the pinnacle of mobile connectivity we’re on the fourth generation of digital networks, with the earlier so-called “1G” networks using an analogue connection being the first. As consumers have over time migrated to the newer and faster mobile network standards then, the usage of the older versions has reduced to the point at which carriers are starting to turn them off. Those 2G networks from the 1990s and the 2000s-era 3G networks which supplanted them are now expensive to maintain, consuming energy and RF spectrum as they do, while generating precious little customer revenue.

Tech From When Any Phone That Wasn’t A Brick Was Cool

A 1990s Motorola phone
If this is your phone, you may be in trouble. Digitalsignal, CC BY-SA 3.0.

All this sounds like a natural progression of technology which might raise few concerns, in the same way that nobody really noticed the final demise of the old analogue systems. There should be little fuss at the 2G and 3G turn-off. But the success of these networks seems to in this case be their undoing, as despite their shutdown being on the cards now for years, there remain many devices still using them.

There can’t be many consumers still using an early-2000s Motorola Flip as their daily driver, but the proliferation of remotely connected IoT devices means that there are still many millions of 2G and 3G modems using those networks. This presents a major problem for network operators, utilities, and other industrial customers, and raises one or two questions here at Hackaday which we’re wondering whether our readers could shed some light on. Who is still using, or trying to use, 2G and 3G networks, why do they have to be turned off in the first place, and what if any alternatives are there when no 4G or 5G coverage is available? Continue reading “2G Or Not 2G, That Is The Question”

Windows 10 The Hard Way: On A Phone

Sure, there are — or were — Windows phones. But [neozed] wanted something different. An earlier project ran Windows 10 on the Raspberry Pi 4 with some tricks, but those are sometimes hard to come by lately, so the next project was to put one on a Xiaomi PocoPhone F1.

The choice of phone wasn’t an accident. There was enough support and information on the Snapdragon 845 to pull the trick off, and this is one of the phones that looked like it should work. They were pretty inexpensive on eBay and have 128 GB of flash and 6 GB of RAM.

After a few false starts, the phone yielded to fastboot mode. Loading UEFI firmware allows you to re-partition the disks using a PC. With the partitions set up, you must find an ARM Windows 10 image to load. Sounds simple, but as you’ll see in the post, the devil is always in the details. Combined with a USB dock, the end result is a tiny Windows computer. However, it does seem like a lot of work. Even the original poster says: “TL;DR don’t do it… get a used Surface X instead.”

We’ve seen old phones repurposed before, of course. Or, go the other way: start from scratch and build a new phone. We won’t judge, either way.

A Mobile Phone From 1985

It might seem quaint through the lends of history we have the luxury of looking through, but in the mid 1980s it was a major symbol of status to be able to communicate on-the-go. Car phones and pagers were cutting-edge devices of the time, and even though there were some mobile cellular telephones, they were behemoths compared to anything we would recognize as a cell phone today. It wasn’t until 1985 that a cell phone was able to fit in a pocket, and that first device wasn’t just revolutionary because of its size. It made a number of technological advancements that were extremely impressive for its time, and [Janus Cycle] takes us through some of those in this teardown video.

The Technophone came to us from Great Britain by way of a former Ericsson engineer named Nils Mårtensson. It was able to achieve its relatively small stature using a surface-mount PCB, which was a cutting-edge manufacturing process for the time. Not only did it use surface-mount components and boards, but the PCB itself has 12 layers and two sides and hosts two custom Technophone chips. The phone is relatively modular as well, with the screen, battery pack, and other components capable of easily disconnecting from the main board. Continue reading “A Mobile Phone From 1985”

Linux Cell Phone? Build OURPhone

[Evan] couldn’t find a phone he liked, so he decided to build his own. There are advantages and disadvantages, as you might expect. On the plus side, you have the ultimate control. On the negative side, it doesn’t quite have the curb appeal — at least to the average user — of a sleek new cell phone from a major manufacturer.

The phone uses a Raspberry Pi, along with a 4G modem and a 480×800 touchscreen. There’s a laser cut box that measures 90x160x30 mm. For reference, a Google Pixel 7 is about 73x156x9 mm, so a little easier on the pocket.

But not one the pocketbook. The OURPhone only costs about $200 USD to build. There are trade-offs. For example, the touchscreen is resistive, so you’ll want a stylus (there’s a slot for it in the case). On the other hand, if you don’t like something, it is all there for you to change.

Obviously, a better screen would help. Thinner batteries might be a good enhancement too. But that’s the beauty of an open project. You can do all these things and more.

We wondered if you could get one of the “mobile” Linux editions to run or even Android. It seems like the hardest part is coming up with a sophisticated enclosure.

Retro Gadgets: The CB Cell Phone

There was a time when one of the perks of having a ham radio in your car (or on your belt) was you could make phone calls using a “phone patch.” In the 1970s, calling someone from inside your parked car turned heads. Now, of course,  it is an everyday occurrence thanks to cell phones. But in 1977, cell phones were nowhere to be found. Joseph Sugarman, the well-known founder of JS&A, saw a need and wanted to fill it. So he offered the “PocketCom CB” which was billed as the “world’s smallest citizens band transceiver.” You can see the full-page ad from 1977 below.

Remember that this is from an era when ICs that could operate at 30 MHz were not the norm, so you have to temper your expectations. The little unit was 5.5 in by 1.5 in and less than an inch thick. That’s actually not bad, but you had — optimistically — 100 mW of output power. They claimed the N cell batteries would last two weeks with average use, but we imagine a lot less as soon as you start transmitting. The weight was 5 oz, but we suspect that is without the batteries.

Continue reading “Retro Gadgets: The CB Cell Phone”

Hackaday Links Column Banner

Hackaday Links: January 15, 2023

It looks like the Martian winter may have claimed another victim, with reports that Chinese ground controllers have lost contact with the Zhurong rover. The solar-powered rover was put into hibernation back in May 2022, thanks to a dust storm that kicked up a couple of months before the start of local winter. Controllers hoped that they would be able to reestablish contact with the machine once Spring rolled around in December, but the rover remains quiet. It may have suffered the same fate as Opportunity, which had its solar panels covered in dust after a planet-wide sandstorm and eventually gave up the ghost.

What’s worse, it seems like the Chinese are having trouble talking to the Tianwen-1 orbiter, too. There are reports that controllers can’t download data from the satellite, which is a pity because it could potentially be used to image the Zhurong landing site in Utopia Planitia to see what’s up. All this has to be taken with a grain of dust, of course, since the Chinese aren’t famously transparent with their space program. But here’s hoping that both the rover and the orbiter beat the odds and start doing science again soon.

Continue reading “Hackaday Links: January 15, 2023”

“Reversing Shorts” Demystify Phone Security

Ever wonder what makes a cellphone’s operating system secure, or what that app you just installed is saying about you behind your back? In a brand new video series, [Jiska] gives us a peek into different topics in smartphone software reverse engineering.

For instance, her latest video, embedded below takes us through some steps to poke at Apple’s RTKit OS, which is the realtime OS that runs inside most of their peripheral devices, including AirPods, but also on their bigger devices too.  We don’t know much about RTKit OS, but [Jiska]’s trick in this video is to get a foothold by looking through two different RTKit OS versions and noting which symbols are common — these are probably OS function names. Now you’ve got something to look for.

Each of the videos is short, to the point, and contains nice tips for perhaps the intermediate-to-advanced reverser who is looking to get into phones. Heck, even if you’re not, her demonstrations of the Frida dynamic tracing tool are worth your time.

And if you want a longer introduction into the internals of cellphones, we heartily recommend her talk, “All Wireless Stacks Are Broken“.

Continue reading ““Reversing Shorts” Demystify Phone Security”