Hackerspacing In Europe: MadSpace In Eindhoven!

IMG_0914 (Custom)

Welcome to Eindhoven! We came to visit a few hackers from MadSpace (translated) but unfortunately they are in the process of moving, and there was not much to see at the space. Lucky for us, our visit corresponded with the Dutch Design Week (translated)! So we still had some cool things to see!

Eindhoven has a very interesting history. Phillips was founded here back in the late 1800’s, with a single factory, but in the past century it grew into what could almost be called Philip’s City. A stretch of a few kilometers of Phillips buildings dominated Eindhoven and almost everyone worked for them. Fast forward to the present and most of the buildings have been sold and turned into other businesses.

Continue reading “Hackerspacing In Europe: MadSpace In Eindhoven!”

Building A Rocket To Launch Your Project Into Space

At Hackaday, we’re familiar with projects that say they’re exploring space. Most of the time, these are high altitude balloons that ascend up to 100,000 feet. Sure, this is very, very high, but it’s only about 1/3rd of the way to lower limit of what can be called space at 100 km or 62 miles. Now, we’re seeing the first steps towards embedding Arduinos, cameras, and other goodies into the celestial spheres with the NE-1 Rocket, a project by [Jonathan McCabe] in Madison, Wisconsin.

The goal of the NE-1 rocket is to launch a 5kg payload into a suborbital trajectory to a height of 120 kilometers. From there, the payload – be it an electronic, biological, or simple imaging experiment – will experience a few minutes of weightlessness before falling back to Earth under a parachute.

Getting into space without the help of a government space agency has been done a few times before, mostly with solid-fuel rockets. [Jonathan]’s system uses a liquid-fueled engine, fed with nitrous oxide as the oxidizer and a secret self-pressurizing liquid fuel. These are fed into an engine that uses a ‘cold wall vortex’ to cool the engine instead circulating fuel around the combustion chamber as in traditional engines.

[Jonathan] has already done a few static tests with a half-scale engine, and he already has a lot of the very hard-to-source components in his lab. It’s a promising project. It falls right in line with the ‘Hackaday Space Program’ idea we’ve been kicking around, and we’d be more than happy to see this project get off the ground

Launching A Glider From Space

We get a ton of tips about weather balloon launches taking hobby electronics into space. But every once in a while one of them stands out from the rest. This project does send an electronic payload into space, but it also lets [David] fly his hardware back from near-space using an RC airplane.

The return vehicle is unpowered, but that shouldn’t be a problem as launching from a weather balloon will provide plenty of altitude for the flight. Because the temperature experienced in that part of the atmosphere is so cold [David] had to take several things into account. Obviously you want your batteries and control electronics to be insulated from the cold. But something that doesn’t usually pop into mind are issues with the servo motors which run the glider’s flaps. They usually have some white grease on the gears. At temps as low as -50C that grease will harden and make the servo stop working so he made sure to clean the gears thoroughly before the flight.

Unfortunately [David] had several problems capturing images and recorded video from the ground station. But his write up is still a fun read and the clip after the break gives a general overview of the entire project from the nose camera of the glider.

Continue reading “Launching A Glider From Space”

Launching A Balloon And Not Landing In The Ocean

In just a few short hours, the Yale Undergraduate Aerospace Association will launch their 4th high altitude balloon project into the rarefied air of the stratosphere and with any luck bring back pictures of the view high above Connecticut  Long Island, Rhode Island, and Martha’s Vineyard.

Inside their surprisingly strong unibody chassis is two GoPro cameras and a triple-redundant telemetry system consisting of a custom radio system capable of transmitting over 40 miles, a cell-phone based comms system and a SPOT satellite tracker.

There is one very large problem the Yale Aerospace team has had to cope with; Because they’re launching their Skyview balloon from the eastern seaboard of the US, it’s very likely their payload could end up taking a drink in the Atlantic. To solve this problem, the team developed a novel cut-down solution: a piece of nichrome heater wire is wrapped around the line tying the payload to the balloon. If the hardware receives a signal from the ground, or has a software problem, or runs out of battery power, the nichrome circuit will release the balloon from its launch vehicle to hopefully return it to solid ground.

The Yale Aerospace team has also written a custom iOS app allowing the chase cars to track the balloon in real time – a great feature if you’re trying to communicate with several cars going down the highway. You can check out the live data from the balloon on the Yale Aerospace tracking site or just head over to their twitter to read the latest news about the flight.

Weather Balloon Payload That (almost) Guides Itself Back To You

The biggest issue with sending expensive electronics into near space is trying to recover them. [Lhiggs] set out to solve this issue with his Senior project for a Mechanical Engineering degree. He figured that a payload dropped from 100,000 feet should be able to glide its way back to some predefined coordinates. Here you can see one of the tests, where the payload is guiding its descent using a parafoil.

Directional control is possible with a parafoil simply by shifting weight between the two supporting ropes. In this case [Lhiggs] designed the payload to hang from a pair of servo-motor-actuated arms. Since the payload already carries altitude and position hardware (such as a GPS, electronic compass, and altimeter) it’s just a matter of waiting for the target height before separating from the weather balloon, then using the servos to navigate to the landing zone.

Unfortunately the project was never fully completed. But you can see that he got pretty far. There is test footage embedded after the break showing the device being dropped from a plane.

Continue reading “Weather Balloon Payload That (almost) Guides Itself Back To You”

Can A Kickstarter Project Actually Build A Space Elevator?

It’s the stuff that Science Fiction is made of: an elevator that climbs its way into space rather than needing a rocket to get there. Can it be done? No. But this Kickstarter project aims to fund research that will eventually make a space elevator possible. They’re already way over their goal, and plan to use the extra funds to extend the reach of the experiments.

A complete success would be a tether that reaches into space, held taught by a weight which is pulled away from earth by centrifugal force. That’s not really on the radar yet (last we heard humans weren’t capable of producing a substance strong enough to keep the tether from snapping). What is in the works is a weather balloon supporting a ribbon which a robot can climb. The team isn’t new to this, having built and tested several models at University and then in a start-up company that closed its doors a few years ago. Now they’re hoping to get a 3-5 kilometer ribbon in the air and to build a new robot to climb it.

For now we’ll have to be satisfied with the 1000 ft. climb video after the break. But we hope to see an Earth-Moon freight system like the one shown in the diagram above before the end of our lifetimes.

Continue reading “Can A Kickstarter Project Actually Build A Space Elevator?”

Only You Can Kick A Child’s Balls Into Space

We had a lot of fun with that title. Of course when you’re talking about launching a thousand ping pong balls into space there’s no end to the puns which can be made. But this is actually a fantastic initiative to get people of all ages excited about science and near-space experiments. [John Powell] offers school children the opportunity to send an experiment into space. He’s Kickstarting the next launch, which is scheduled to take place in September. This way each entrant can fly their project for free, then get the results and a certificate back once the weather-balloon-based hardware is recovered.

There is one size restriction for the program. Each experiment must fit inside of a ping pong ball. But you’ll be surprised what can be accomplished. [John] reports that the most simple, yet interesting project is to place a small marshmallow inside the ball. As it rises through the atmosphere it will grow to fill the entire ball, then be freeze-dried by the the extreme temperatures. Some are not so low-tech. There’s an image of a tiny PCB holding a DS1337 and some sensors. It’s an atmospheric data logger that will provide plenty of information to analyze upon its return.

[via Hacked Gadgets]