TARDIS Alarm Doesn’t Go VWORRRRRP VWRORRRP VWORRRP

tardis alarm

Motion sensors are pretty useful — but they’re just so darn ugly! Well — if you’re a Whovian — maybe this hack is for you. A 3D printed TARDIS Motion Sensor Alarm!

[Malcolm] has a home security system that uses a series of motion sensors to detect movement in the house. When movement is detected an indicator LED turns on, and a wireless signal is sent to the main control system. So after discovering a nice 3D model of the TARDIS (Time and Relative Dimension in Space) on Thingiverse, he decided to see if he could hack one of his motion sensors to fit inside of it instead.

As it turns out, it was as simple as removing the sensor’s external shell, 3D printing a few support pieces inside of the TARDIS, and soldering on a bright blue LED to replace the dinky indicator light. Simple, but effective!

Don’t forget to check out the following video. Allons-y!

Continue reading “TARDIS Alarm Doesn’t Go VWORRRRRP VWRORRRP VWORRRP”

Two-Wheel Balancing Robot Revived From The Dead

Capture

[Jouni] built a pretty nice little two-wheeled robot a while back — but he never got it working quite right. Taking inspiration and a bit of opensource code from another hacker featured here, he’s finished the bot, and it works great!

After seeing [Jose’s] 3D printed Air Hockey bot, he poked around the creator’s blog and discovered the B-Robot, a 3D printed, two-wheeled, stepper driven, balancing robot. As it turned out, it was incredibly similar to a robot [Jouni] had made himself previously!

[Jouni’s] robot features two NEMA-17 steppers, a 12v 2200mAh battery pack, an Arduino Pro Mini, a MPU6050 gyro and a FrSky receiver. Lucky for him, [Jose’s] B-Robot made use of the same steppers and gyro! Using some of [Jose’s] code from his GitHub, [Jouni] was able to bring new life into his little robot!

We’ve included videos of both the original project, and [Jouni’s] version. Aren’t opensource projects awesome?

Continue reading “Two-Wheel Balancing Robot Revived From The Dead”

3D Printering: Making A Thing In FreeCAD, Part I

printering

I’ve been writing these tutorials on making an object in popular 3D modeling programs for a while now, and each week I’ve put out a call for what software I should do next. There is one constant in all those comment threads: FreeCAD. I don’t know if these suggestions reflect the popularity or difficulty of FreeCAD nevermind, it’s totally the difficulty.

FreeCAD is an amazing tool that, if used correctly, can be used to make just about any part, and do it in a manufacturing context. If you need a bauble that’s three times the size of the original, FreeCAD’s parametric modeling makes it easy to scale it up. If you’re designing a thumbscrew and want the head larger while keeping the threads the same, FreeCAD is for you. Basically, you can think of this as a graphical extension of the Thingiverse Customizer. Very powerful, very cool, and unlike a lot of CAD packages out there, free.

Our in-house, overpaid SEO expert (he’s really just a monkey someone trained to use a bullwhip) demands I link to the previous ‘Making a Thing’ tutorials:

The tutorial for FreeCAD continues below.

Continue reading “3D Printering: Making A Thing In FreeCAD, Part I”

Robot Dominates Air Hockey, Frightens John Connor, Wayne Gretzky

We’ve all been disappointed at some point in our lives after yearning to play air hockey and not finding anyone to play against. This is no longer a problem at [Jose]’s house. He has built a very amazing Air Hockey Playing Robot. This robot moves in 2 directions, can predict the movements of the puck and also decide to block, shoot or a do a combination of both.

Surprisingly, most of the ‘robotics’ parts are 3D printer left overs, which includes: NEMA17 stepper motors, an Arduino Mega, a RAMPS board, motor drivers, belts, bearings and rods. The bracketry, puck and paddle are all 3D printed. The air hockey table itself was built from scratch using off-the-shelf wood. Two standard 90mm PC fans are all that are responsible for creating the air pressure used to lift the puck. A PS3 camera monitors the action and is literally this robot’s eye in the sky.

Check out the video and learn more about this project after the break.

Continue reading “Robot Dominates Air Hockey, Frightens John Connor, Wayne Gretzky”

The Most Horrifying Use Of 3D Printing

As anyone with a Facebook account that’s over the age of 25 will tell you, 3D ultrasounds of fetuses are all the rage these days, with ultrasound pictures of the unborn recently taking the leap from black and white blobs to 3D – and 4D – images. With the advent of 3D printers, the inevitable has happened. Now you can order a 3D print of your yet-to-be-born progeny.

The company behind this – 3D Babies – takes 3D ultrasound data from weeks 24-32 and turns it into a 3D model. The printed 3D models sell for $800 for the full size version, $400 for a half-size version, and $200 for a quarter size version. It appears the 3D ultrasound data is simply wrapped around a pre-defined mesh, so while the resulting print may come out looking like your spawn, it’s still not a physical copy of the 3D/4D ultrasound data.

Despite the ‘creepy’ factor of these little bundles of plastic, we’re wondering why we haven’t seen anything like this before. Are there any obstetricians/radiologists/ultrasound techs out there that have experience with importing 3D ultrasound data into an editor of some sort? Notwithstanding any HIPAA violations, it seems it would be rather easy to turn this sort of 3D data into a printed object. 3D printing CT scans models can’t be the only other instance of this type of thing.

Thanks [Will] for the nightmares

The FilaWinder

filawinder

The latest addition to the line of 3D printer accessories is the FilaWinder, a tool for winding your filament neatly onto a spool. If you’ve abandoned buying your filament by the reel in favor of making your own from cheaper pellets—such as the Lyman Extruder, the Filabot Wee, or other alternatives, including the winder’s companion product, the FilaStruder—then you’ve likely had to roll everything up by hand, perhaps after it flopped around on the floor first.

The FilaWinder spools for you while the filament extrudes, using a sensor to adjust the winding the speed to match extrusion rates as well as running it through some PTFE tube to gently coil it as it moves along. Perhaps most important, the FilaWinder provides a guide arm to direct the filament back and forth across the reel as it spools up, to keep it evenly distributed. Swing by their Thingaverse page for a list of printable pieces and their assembly guide can be found here, as well as on YouTube. You can see an overview video of the FilaWinder winding away after the break.

Continue reading “The FilaWinder”

Ask Hackaday: What’s Up With This Carbon Fiber Printer?

The Hackaday Tip Line has been ringing with submissions about the Mark Forg3D printer, purportedly the, “world’s first 3D printer that can print carbon fiber.”

Right off the bat, we’re going to call that claim a baldfaced lie. Here’s a Kickstarter from a few months ago that put carbon fiber in PLA filament, making every desktop 3D printer one that can print in carbon fiber.

But perhaps there’s something more here. The Mark Forged site gives little in the way of technical details, but from what we can gather from their promo video, here’s what we have: it’s a very impressive-looking aluminum chassis with a build area of 12″x6.25″x6.25″. There are dual extruders, with (I think) one dedicated to PLA and Nylon, and another to the carbon and fiberglass filaments. Layer height is 0.1mm for the PLA and Nylon, 0.2mm for the composites. Connectivity is through Wifi, USB, or an SD card, with a “cloud based” control interface. Here are the full specs, but you’re not going to get much more than the previous few sentences.

Oh, wait, it’s going to be priced at around $5000, which is, “affordable enough for average consumers to afford.” Try to contain your laughter as you click the ‘read more’ link.

Continue reading “Ask Hackaday: What’s Up With This Carbon Fiber Printer?”