I Gotta Print More Cowbell

Since the earliest days of affordable, home 3D printers, the technology behind them has been continuously improving. From lowering costs, improving print quality, increasing size and detail, and diversifying the types of materials, it’s possible to get just about anything from a 3D printer today with a minimum of cost. Some of the things that printers can do now might even be surprising, like this upgrade that makes [Startup Chuck]’s 3D printer capable of printing realistic-sounding cowbells out of plastic.

The key to these metal-like prints is a filament called PPS-CF which is a carbon fiber-reinforced polyphenylene sulfide, or PPS. PPS-CF has a number of advantages over other plastics including high temperature tolerance and high dimensional stability, meaning its less likely to warp or deform even in harsh environments. But like anything with amazing upsides, there are some caveats to using this material. Not only does the carbon fiber require more durable extruder nozzles but PPS-CF also needs an extremely hot print head to extrude properly in addition to needing a heated bed. In [Startup Chuck]’s specific case he modified his print head to handle temperatures of 500°C and his print bed to around 100°C. This took a good bit of work just to supply it with enough energy to get to these temperatures and caused some other problems as well, like the magnet on the printer bed demagnetizing above around 75°C.

To get to a working cowbell took more than just printer upgrades, though. He had to go through a number of calibrations and test prints to dial in not only the ideal temperature settings of the printer but the best thicknesses for the cowbell itself so it would have that distinct metallic ring. But cowbells aren’t the only reason someone might want to print with carbon-reinforced materials. They have plenty of uses for automotive, chemical processing, high voltage, and aerospace applications and are attainable for home 3D printers. Just make sure to take some basic safety precautions first.

Continue reading “I Gotta Print More Cowbell”

3D Filament lizards show decomposable joints

Sustainable 3D Prints With Decomposable Filaments

What if you could design your 3D print to fall apart on purpose? That’s the curious promise of a new paper from CHI 2025, which brings a serious hacker vibe to the sustainability problem of multi-material 3D printing. Titled Enabling Recycling of Multi-Material 3D Printed Objects through Computational Design and Disassembly by Dissolution, it proposes a technique that lets complex prints disassemble themselves via water-soluble seams. Just a bit of H2O is needed, no drills or pliers.

At its core, this method builds dissolvable interfaces between materials like PLA and TPU using water-soluble PVA. Their algorithm auto-generates jointed seams (think shrink-wrap meets mushroom pegs) that don’t interfere with the part’s function. Once printed, the object behaves like any ordinary 3D creation. But at end-of-life, a water bath breaks it down into clean, separable materials, ready for recycling. That gives 90% material recovery, and over 50% reduction in carbon emissions.

This is the research – call it a very, very well documented hack – we need more of. It’s climate-conscious and machine-savvy. If you’re into computational fabrication or environmental tinkering, it’s worth your time. Hats off to [Wen, Bae, and Rivera] for turning what might otherwise be considered a failure into a feature.

Continue reading “Sustainable 3D Prints With Decomposable Filaments”

Bar of conductive filament with leds and a battery

Putting Conductive TPU To The Test

Ever pried apart an LCD? If so, you’ve likely stumbled at the unassuming zebra strip — the pliable connector that makes bridging PCB pads to glass traces look effortless. [Chuck] recently set out to test if he could hack together his own zebra strip using conductive TPU and a 3D printer.

[Chuck] started by printing alternating bands of conductive and non-conductive TPU, aiming to mimic the compressible, striped conductor. Despite careful tuning and slow prints, the results were mixed to say the least. The conductive TPU measured a whopping 16 megaohms, barely touching the definition of conductivity! LEDs stayed dark, multimeters sulked, and frustration mounted. Not one to give up, [Chuck] took to his trusty Proto-pasta conductive PLA, and got bright, blinky success. It left no room for flexibility, though.

It would appear that conductive TPU still isn’t quite ready for prime time in fine-pitch interconnects. But if you find a better filament – or fancy prototyping your own zebra strip – jump in! We’d love to hear about your attempts in the comments.

Continue reading “Putting Conductive TPU To The Test”

Instant Filament Drying Satisfies An Immediate Need

Most 3D printer filament soaks up water from the air, and when it does, the water passing through the extruder nozzle can expand, bubble, and pop, causing all kinds of mayhem and unwanted effects in the print. This is why reels come vacuum sealed. Some people 3D print so much that they consume a full roll before it can soak up water and start to display these effects. Others live in dry climates and don’t have to worry about humidity. But the rest of us require a solution. To date, that solution has been filament dryers, which are heated elements in a small reel-sized box, or for the adventurous an oven put at a very specific temperature until the reel melts and coats the inside of the oven. The downside to this method is that it’s a broad stroke that takes many hours to accomplish, and it’s inefficient because one may not use the whole roll before it gets soaked again.

In much the same way that instant water heaters exist to eliminate the need for a water heater, [3DPI67] has a solution to this problem, and it involves passing the filament through a small chamber with a heating element and fan circulating air. The length of the chamber is important, as is the printing speed, since the filament needs to have enough time in the improvised sauna to sweat out all its water weight. The temperature of the chamber can’t get above the glass transition temperature of the filament, either, which is another limiting factor for the dryer. [3DPI67] wrote up a small article on his improvised instant filament heater in addition to the video.

So far, only TPU has been tested with this method, but it looks promising. Some have suggested a larger chamber with loops of filament so that more can be exposed for longer. There’s lots of room for innovation, and it seems some math might be in order to determine the limits and optimizations of this method, but we’re excited to see the results.

Studying The Finer Points Of 3D Printed Gears

[How to Mechatronics] on YouTube endeavored to create a comprehensive guide comparing the various factors that affect the performance of 3D printed gears. Given the numerous variables involved, this is a challenging task, but it aims to shed light on the differences. The guide focuses on three types of gears: the spur gear with straight teeth parallel to the gear axis, the helical gear with teeth at an angle, and the herringbone gear, which combines two helical gear designs. Furthermore, the guide delves into how printing factors such as infill density impact strength, and it tests various materials, including PLA, carbon fiber PLA, ABS, PETG, ASA, and nylon, to determine the best options.

The spur gear is highly efficient due to the minimal contact path when the gears are engaged. However, the sudden contact mechanism, as the teeth engage, creates a high impulse load, which can negatively affect durability and increase noise. On the other hand, helical gears have a more gradual engagement, resulting in reduced noise and smoother operation. This leads to an increased load-carrying capacity, thus improving durability and lifespan.

It’s worth noting that multiple teeth are involved in power transmission, with the gradual engagement and disengagement of the tooth being spread out over more teeth than the spur design. The downside is that there is a significant sideways force due to the inclined angle of the teeth, which must be considered in the enclosing structure and may require an additional bearing surface to handle it. Herringbone gears solve this problem by using two helical gears thrusting in opposite directions, cancelling out the force.

Continue reading “Studying The Finer Points Of 3D Printed Gears”

Thermoelectric Module Keeps Printer Filament Cool And Dry

Anyone who has left their car windows open during a rainstorm will tell you the best way to dry the upholstery is to crank the AC and close the windows. A couple of hours later, presto — dry seats. The same can be said for 3D printer filament, and it’s pretty much what [Ben Krejci] is doing with this solid-state filament dryer.

The running gear for this build is nothing fancy; it’s just a standard thermoelectric cooling module and a fan. The trick was getting the airflow over the module right. [Ben] uses two air inlets on his printed enclosure to pull air from the cold side of the Peltier, which allows the air enough time in contact with the cold to condense out the water. It also allows sufficient airflow to keep the hot side of the module from overheating.

Water collection was a challenge, too. Water always finds a way to leak, and [Ben] came up with a clever case design incorporating a funnel to direct water away. The module is also periodically run in reverse to defrost the cold side heatsink.

The dehumidifier lives in a large tool cabinet with plenty of room for filament rolls and is run by an ESP32-C3 with temperature and humidity sensors, which allowed [Ben] to farm most of the control and monitoring out to ESPHome. The setup seems to work well, keeping the relative humidity inside the cabinet in the low 20s — good enough for PETG and TPU.

It’s an impressively complete build using off-the-shelf parts. For a different approach to solid-state filament drying, check out [Stefan]’s take on the problem.

Building An 8-Color Automated Filament Changer

Multi-filament printing can really open up possibilities for your prints, even more so the more filaments you have. Enter the 8-Track from [Armored_Turtle], which will swap between 8 filaments for you!

The system is modular, with each spool of filament installed in a drybox with its own filament feeder .The dryboxes connect to the 8-Track changer via pogo pins for communication and power. While [Armored_Turtle] is currently using the device on a Voron printer, he’s designed it so that it can be easily modified to suit other printers. As it’s modular, it’s also not locked into running 8 filaments. Redesigning it to use more or less is easy enough thanks to its modular design.

The design hasn’t been publicly released yet, but [Armored_Turtle] states they hope to put it on Github when it’s ready. It’s early days, but we love the chunky design of those actively-heated drybox filament cassettes. They’re a great step up from just keeping filament hanging on a rod, and they ought to improve print performance in addition to enabling multi-filament switching.

We’ve seen some other neat work in this space before, too. Video after the break.

Continue reading “Building An 8-Color Automated Filament Changer”