Corkscrew LASER “Hologram”

If you watch much science fiction, you know that in the future, there’re plenty of 3D holographic displays. From Princess Leah’s distress call to the Star Trek holodeck, there’s no shortage of computers that can make realistic images. It might not be up to holodeck standards, but [freedscript] created a 3D display for an Arduino using a chopstick, a motor, some paper, and a LASER. Of course, it isn’t actually a hologram, but neither is half the stuff you see on TV (Star Trek’s holographic characters were disturbingly solid for standing waves). The display is a type of volumetric display.

Continue reading “Corkscrew LASER “Hologram””

Airsoft Sentry Gun Keeps Your House Guarded

Ever since automated turrets became a thing in video games, people have strived to make their own — let’s be honest, who wouldn’t want an automated defense turret? Well, [Austiwawa] just finished making a pretty awesome Airsoft gun turret, and decided to make a video tutorial on how he made it.

The inspiration comes from Project Sentry Gun, a long-standing website dedicated to teaching people how to make automated sentry gun turrets. We’ve seen projects use this to turn Nerf guns into turrets, and people have even made their own paintball gun sentry turrets.

Following along the build only takes about 5 minutes of your time and summarizes the process very concisely. We particularly like the main rotation axis — one RC servo motor and 4 casters make up a controllable lazy susan that reduces the load on the servo motor and allows you to mount a pretty big gun on the turret.

Continue reading “Airsoft Sentry Gun Keeps Your House Guarded”

The Biggest Super Hexagon Fan

For those who haven’t addicted themselves to Super Hexagon yet, it’s pretty… addicting, to say the least. Normally this 80’s arcade-style game would run in a browser but some of the people at Club de Jaqueo in Buenos Aires decided to cram all of that into an Arduino. They didn’t stop there, though, and thought that it would work best with a POV display.

To navigate the intricate maze of blending a POV display with a fast-paced game like this, the group turned to the trusty Arduino Micro. After some frustration in the original idea, they realized that the game is perfectly suited for a POV display since it’s almost circular. The POV shouldn’t take up too much of the processing power of the Arduino, so most of the clock cycles can be used for playing the game. They couldn’t keep the original name anymore due to the lack of hexagon shape (and presumably copyrights and other legal hurdles), but the style of the original is well-preserved.

The group demonstrated their setup this past weekend, and the results are impressive judging by the video below. They’ve also released their source code and schematics as well, in case you have an old fan (or maybe even a bicycle?) lying around that is just begging to be turned into a mini-arcade game.

Continue reading “The Biggest Super Hexagon Fan”

Light Duty Timekeeping: Arduino Berlin Clock

Just when we thought we’d seen all the ways there are to tell time, along comes [mr_fid]’s Berlin clock build. It’s based on an actual clock commissioned by the Senate of Berlin in the mid-1970s and erected on the famous Kurfürstendamm avenue in 1975. Twenty years later it was decommissioned and moved to stand outside the historic Europa-center.

This clock tells the time using set theory and 24-hour time. From the top down: the blinking yellow circle of light at the top indicates the passing seconds; on for even seconds and off for odd. The two rows of red blocks are the hours—each block in the top row stands for five hours, and each block below that indicates a single hour. At 11:00, there will be two top blocks and one bottom block illuminated, for instance.

The bottom two rows show the minutes using the same system. Red segments indicate 15, 30, and 45 minutes past the hour, making it unnecessary to count more than a few of the 5-minute top segments. As with the hours, the bottom row indicates one minute per light.

Got that? Here’s a quiz. What time is it? Looking at the picture above, the top row has three segments lit. Five hours times three is 15:00, or 3:00PM. The next row adds two hours, so we’re at 5:00PM. All of the five-minute segments are lit, which adds 55 minutes. So the picture was taken at 5:55PM on some even-numbered second.

The original Berlin clock suffered from the short lives of incandescent bulbs. Depending on which bulb went out, the clock could be ‘off’ by as little as one minute or as much as five hours. [mr_fid] stayed true to the original in this beautiful build and used two lights for each hour segment. This replica uses LEDs driven by an Arduino Nano and a real-time clock. Since the RTC gives hours from 0-23 and minutes and seconds from 0-59, a couple of shift registers and some modulo calculations are necessary to convert to set theory time.

[mr_fid] built the enclosure out of plywood and white oak from designs made in QCAD. The rounded corners are made from oak, and the seconds ring is built from 3/8″ plywood strips bent around a spray can. A brief tour of the clock is waiting for you after the break. Time’s a-wastin’!

Continue reading “Light Duty Timekeeping: Arduino Berlin Clock”

Arduino Powered Knife-Wielding Tentacle Will Leave You In Stitches

Writing articles for Hackaday, we see funny projects, and we see dangerous projects. It’s rare to find a project which combines the two. This one somehow manages to pull it off. [Outaspaceman] is familiar with LittleBits, but he’s just starting to learn Arduino programming. He completed the blink tutorial, but blinking an LED just wasn’t enough fanfare for the success of his first Arduino program. He connected the Arduino Mega’s LED output to a pair of LittleBits which then switch a servo between two positions. A bare servo wouldn’t be much fun, so [Outaspaceman] connected a tentacle and a small Swiss army knife. Yes, a knife.

The tentacle in question is designed to be a finger puppet. There’s something about a tentacle waving a knife around that is so hilarious and absurd that we couldn’t help but laugh. We’re not alone apparently, as this video has gone viral with over 1 million views. It’s almost like a violent revenge of the most useless machine. For the technically curious, the tentacle’s seemingly random motion is analogous to that of the double pendulum.

Our readers will be happy to know that [Outaspaceman] has made it to the Arduino servo tutorial, and is now controlling the servo directly, no LittleBits needed. We just hope he has a good way to turn his creation off – without the need for stitches.

Continue reading “Arduino Powered Knife-Wielding Tentacle Will Leave You In Stitches”

Strike A Chord With This Pocket Keyboard

[Brian] managed to resist the draw of the Left Shark costume and went as a cyberpunk for Halloween this year. Among his costume’s props was a small, one-handed chording keyboard that fit easily into one of his pockets. Now he could have just glued a couple of key caps to something small and called it a day. Instead, [Brian] made a fully functional and modular chording keyboard that can communicate over Bluetooth or USB.

What is a chording keyboard, you ask? Instead of entering keystrokes one at a time, a much smaller set of keys are mashed in meaningful combinations called chords. Once you know what you’re doing, it’s much faster than a standard keyboard. If you’ve ever seen a court reporter hammering away on a tiny machine, you have seen a chording keyboard in action. Our own [Elliott Williams] covered the topic in detail over the summer.

[Brian]’s keyboard has seven keys, one for each finger and three for the thumb. Any key found on a standard 104-key can be made by pressing a combination of keys with the fingers in relation to the center, near, or far thumb keys. We’re pretty impressed that he was able to stuff all of that hardware in such a small 3D-printed package. It’s based on an Arduino micro and uses an Adafruit EZ Key for Bluetooth communication with a phone or tablet.

The ultimate plan is to make this into a wrist-mounted chording keyboard that extends or retracts with the flick of your wrist. [Brian] has made some progress on this, having developed and printed the mechanism. But as you can see in the video after the break, adding the keyboard to it is just too much for the hobby servos he chose to move. Still, if he can dial it in this is going to be awesome!

The keyboard also has an ADXL335 accelerometer breakout, which means it can function as a tilt mouse. Neither the Bluetooth nor the tilt mouse functionality are imperative, though—if you want to make your own and leave either of these out, there is no need to alter the code.

Continue reading “Strike A Chord With This Pocket Keyboard”

This VU Meter Is Built Into The Speaker

Depending on the music you’re listening to, watching a VU meter bounce to the music is always a good time. So why not integrate the VU meter right into the audio source? That’s what [Matikas] did, and it’s pretty fantastic.

He started with a pair of speakers he had and picked up some NeoPixel LED strips. Carefully wrapping the LED strips around the inside circumference of each speaker, the LEDs fit behind the speaker grills, giving it a cool effect when they’re on.

To control the LEDs, he’s using an Arduino Uno (Atmega328p) which measures the audio level in order to modulate the LED output. A bit of software later (shared on GitHub if you’re interested!) and the VU meters were ready for action — check it out!

Continue reading “This VU Meter Is Built Into The Speaker”