Hackaday Prize 2023: The Assistive Tech Challenge Starts Now

We’d all love to change the world and make it a better place, but let’s be honest…that’s a pretty tall order. Even the best of ideas, implemented perfectly, can only do so much globally. But that doesn’t mean the individual can’t make a difference — you just need to think on a different scale. If improving everyone’s life is a bit out of reach, why not settle for a smaller group? Or perhaps even just one person?

That’s precisely what we’re looking for in the Assistive Tech Challenge of the 2023 Hackaday Prize. In this Challenge, we’re asking the community to come up with ideas to help those with disabilities live fuller and more comfortable lives.

Whether you help develop an improved prosthesis that could benefit thousands, or design a bespoke communication device that gives a voice to just a single individual, it’s hard to imagine a more noble way to put your skills and knowledge to use.

Looking to lend a hand? You’ve got from now until May 30th to enter your Assistive Tech project. It doesn’t matter what kind of impairment it focuses on — so long as it helps somebody work, learn, or play, it’s fair game to us.

The ten finalists for this Challenge will be announced around June 12th, but you’ll have to wait until Hackaday Supercon in November to find out which projects take home their share of the more than $100,000 in cash prizes graciously provided by sponsors Digi-Key and SupplyFrame.

Continue reading “Hackaday Prize 2023: The Assistive Tech Challenge Starts Now”

Sensor Glove Translates Sign Language

Sign language is a language that uses the position and motion of the hands in place of sounds made by the vocal tract. If one could readily capture those hand positions and movements, one could theoretically digitize and translate that language. [ayooluwa98] built a set of sensor gloves to do just that.

The brains of the operation is an Arduino Nano. It’s hooked up to a series of flex sensors woven into the gloves, along with an accelerometer. The flex sensors detect the bending of the fingers and the gestures being made, while the accelerometer captures the movements of the hand. The Arduino then interprets these sensor signals in order to match the user’s movements up with a pre-stored list of valid signs. It can then transmit out the detected language via a Bluetooth module, where it is passed to an Android phone for translation via text-to-speech software.

The idea of capturing sign language via hand tracking is a compelling one; we’ve seen similar projects before, too. Meanwhile, if you’re working on your own accessibility projects, be sure to drop us a line!

Morse Keyboard Communicates With The Blink Of An Eye

Most of us use our hands to interface with computers, but the human body is capable of many types of input other than that of fingers and feet. But what about people who can’t use their extremities and don’t have a voice? For their sake, it’s time to get creative.

[Michael Paul Coder] has made a way to type simply by blinking in Morse code. Those of you with long memories may recall Lucid Scribe, where he was attempting to document lucid dreaming experiments by detecting rapid eye movements with an accelerometer and triggering his computer to play music. This would in turn notify [Michael] that he was in fact dreaming and was safe to tie a cape around his neck and take a flying leap from a tall building.

Whereas [Michael]’s creation needed a commercial EEG device before, he’s now made it work with just an old webcam thanks to the new trans-consciousness messaging protocol, which operates by using facial detection and then interpreting the amount of changed pixels between video frames. Be sure to check it out in action after the break.

You know how much we love assistive technology around here — just two years ago, the Byte took top honors in The Hackaday Prize.

Continue reading “Morse Keyboard Communicates With The Blink Of An Eye”

The Coolest Controller Mod, Hands Down

Video games are a great way to relax, and sometimes get your heart rate up at the same time. But unless you’re playing something like Dance Dance Revolution, the controls pretty much always require the use of both hands. Even the old Atari controller benefited from using the other hand for support.

But what if you don’t have the use of both hands? Or you have a repetitive stress injury? Or you just want to eat cheese curls with chopsticks while you play? [Akaki Kuumeri] has you covered with one of the hands-down greatest uses for 3D printing we’ve seen — a PlayStation DualShock 4 controller modified for one-handed use. If this looks familiar, it may be because [Akaki] made a PS5 controller version a while back, but who can get one of those, anyway?

Though [Akaki] does most of the demonstrating in the video below with their left hand, they were cool enough to make a right-handed version as well. In the left-handed version, the symbol buttons and right trigger are actuated with the left hand, and the right joystick is used by moving the whole controller against your leg, the table, the arm of the couch, or whatever you wish.

[Akaki] even designed some optional pieces, including a leg strap. The right-hand version of course does the D-pad instead. But what should the order of the arrow buttons be? After much contemplation, [Akaki] settled on the standard DDR configuration of ←↓↑→.

We love that the symbols are made from raw filament pressed into grooves, and think it’s totally awesome that this is made to be attached to the controller and removed with one hand. Check out the video below to see it in action with a handful of games.

Continue reading “The Coolest Controller Mod, Hands Down”

Assistive Tech And Video Games

Assistive technologies have a pretty big presence here on Hackaday, and this hack is nothing short of interesting. [kerchoo_22] is working on a hands-free video game controller as a final project for her engineering class and we think it’s worth sharing.

The basic premise of the circuit is pretty simple. She DIY’d a few contact switches using conductive plates made of cardboard, duct tape, and aluminum foil. The output of the switch is read by analog input pins on an Arduino Leonardo. When the switches are off, the analog input pins are pulled HIGH using 1 MegaOhm resistors. But when the user hits their head on one of the four conductive pads, the switch is engaged, and the analog input pins are shorted to ground.

The Arduino Leonardo, having a native USB port, is able to directly emulate a keyboard. Each conductive pad is mapped to a different key press corresponding to different functions within the game. Left, right, shoot, etc. And there you have it, gameplay without using hands or a controller!

Now, it seems as though [kerchoo_22] put an appropriate amount of cushion on the head pads, so there probably isn’t much danger of a concussion. Either way, you can never be too careful.

Inputs Of Interest: The OrbiTouch Keyless Keyboard And Mouse

I can’t remember how exactly I came across the OrbiTouch keyboard, but it’s been on my list to clack about for a long time. Launched in 2003, the OrbiTouch is a keyboard and mouse in one. It’s designed for people who can’t keyboard regularly, or simply want a different kind of experience.

The OrbiTouch was conceived of by a PhD student who started to experience carpal tunnel while writing papers. He spent fifteen years developing the OrbiTouch and found that it could assist many people who have various upper body deficiencies. So, how does it work?

It’s Like Playing Air Hockey with Both Hands

To use this keyboard, you put both hands on the sliders and move them around. They are identical eight-way joysticks or D-pads, essentially. The grips sort of resemble a mouse and have what looks like a special resting place for your pinky.

One slider points to groups of letters, numbers, and special characters, and the other chooses a color from a special OrbiTouch rainbow. Pink includes things like parentheses and their cousins along with tilde, colon and semi-colon. Black is for the modifiers like Tab, Alt, Ctrl, Shift, and Backspace. These special characters and modifiers aren’t shown on the hieroglyphs slider, you just have to keep the guide handy until you memorize the placement of everything around the circle.

You’re gonna need a decent amount of desk space for this. Image via OrbiTouch

The alphabet is divided up into groups of five letters which are color-coded in rainbow order that starts with orange, because red is reserved for the F keys. So for instance, A is orange, B is yellow, C is green, D is blue, E is purple, then it starts back over with F at orange. If you wanted to type cab, for instance, you would start by moving the hieroglyph slider to the first alphabet group and the color slider to green.

Continue reading “Inputs Of Interest: The OrbiTouch Keyless Keyboard And Mouse”