Old Projects? Memorialize Them Into Functional Art

What does one do with old circuit boards and projects? Throwing them out doesn’t feel right, but storage space is at a premium for most of us. [Gregory Charvat] suggests doing what he did: combining them all into a wall-mountable panel in order to memorialize them, creating a functional digital clock in the process. As a side benefit, it frees up storage space!

Everything contributes. If it had lights, they light up. If it had a motor, it moves.

Memorializing and honoring his old hardware is a journey that involved more than just gluing components to a panel and hanging it on the wall. [Gregory] went through his old projects one by one, doing repairs where necessary and modifying as required to ensure that each unit could power up, and did something once it did. Composition-wise, earlier projects (some from childhood) are mounted near the bottom. The higher up on the panel, the more recent the project.

As mentioned, the whole panel is more than just a collage of vintage hardware — it functions as a digital clock, complete with seven-segment LED displays and a sheet metal panel festooned with salvaged controls. Behind it all, an Arduino MEGA takes care of running the show.

Creating it was clearly a nostalgic journey for [Gregory], resulting in a piece that celebrates and showcases his hardware work into something functional that seems to have a life of its own. You can get a closer look in the video embedded below the page break.

This really seems like a rewarding way to memorialize one’s old projects, and maybe even help let go of unfinished ones.

And of course, we’re also a fan of the way it frees up space. After all, many of us do not thrive in clutter and our own [Gerrit Coetzee] has some guidance and advice on controlling it.

Continue reading “Old Projects? Memorialize Them Into Functional Art”

Lightning Talks On Time, With This Device

Ask a Hackaday scribe who’s helped run the lightning talks at one of our events, and they’ll tell you that keeping the speakers on time is a challenge. Conversely if the staffer is trying to indicate to the speaker how much time they have left, it must be difficult from the podium to keep track while delivering your talk. Fortunately there’s [makeTVee] waiting in the wings with a solution, a cube whose faces each have a custom 5×7 LED matrix on them. The countdown is clear and unambiguous, and should provide no distractions.

The brains behind it all is a XIAO nRF52840 Sense board using the Zephyr RTOS, the LEDs are WS2812s on their own PCBs, and the party piece is only revealed at the end of the countdown. A tilt mechanism triggered by a servo releases a ball bearing down a track, where it hits a telephone bell and provides a very audible reminder to the speaker. The result saw action during the lightning talks at the Hackaday Europe event earlier in the year, but it’s taken a while for the write-up to make it online.

Continue reading “Lightning Talks On Time, With This Device”

This Soviet-Style Clock Uses Homemade Nixie Tubes And Glowing Logic

The Neon glow of a Nixie tube makes for an attractive clock, but that’s not enough neon for some people. [Changliang Li] is apparently one of those people, because he’s using soviet-era cold-cathode tubes as the logic for his “Soviet-Era Style Clock”

Aside from the nixies for display, the key component you see working in this beautiful machine are the MTX-90 cold cathode thyratrons, which look rather like neon tubes in action. That’s because they essentially are, just with an extra trigger electrode (that this circuit doesn’t use). The neon tubes are combined into a loop counter, which translates the 50 Hz mains circuit in to seconds, minutes, and hours. The circuit is not original to this project, and indeed was once common to electronics books. The version used in this project is credited to [PA3FWM].

The Nixie tubes are new-made by [Sadudu] of iNixie labs, and we get a fascinating look in how they are made. (Tubemaking starts at around 1:37 in the video below.) It looks like a fiber laser is used to cut out glow elements for the tube, which is then encapsulated on a device which appears to be based around a lathe.

The cold-cathode tubes used as logic rely on ambient light or background radiation to start reliably, since the trigger electrode is left floating. In order to ensure reliable switching from the thyratrons, [Changliang Li] includes a surplus smoke detector source to ensure sufficient ionization. (The video seems to imply the MTX-90 was seeded with radioisotopes that have since decayed, but we could find no evidence for this claim. Comment if you know more.)

The end result is attractive and rather hypnotic. (Jump to 3:37 to see the clock in action.) If you want to know more about this sort of use for neon lamps (and the Soviet MTX-90) we featured a deeper dive a while back.

Thanks to [Changliang Li] for the incandescent tip. If one of your bright ideas has had a glow up into a project, don’t hesitate to share it on our tips line.

Continue reading “This Soviet-Style Clock Uses Homemade Nixie Tubes And Glowing Logic”

Candle Oscillator Really Heats Things Up

As the timebase for a clock, almost anything with a periodic oscillation can be used. Traditionally, that meant a pendulum, but in our time, we’ve seen plenty of others. Perhaps none as unusual as [Tim]’s candle flicker clock, though.

Candles are known for their flickering, a property of the wick and the fuel supply that candle manufacturers have gone to great lengths to mitigate. If you bring several of them together, they will have a significant flicker, with a surprisingly consistent 9.9 Hz frequency. This is the timebase for the clock, with the capacitance of the flame being sensed by a wire connected to a CH32 microcontroller, and processed to produce the required timing.

We like this project, and consider it a shame that it’s not an entry in our One Hertz Challenge.  Oddly, though, it’s not the first candle-based oscillator we’ve seen; they can even be turned into active electronic devices.

2025 One Hertz Challenge: Atomic Decay Clock Is Accurate But Not Precise

At this point, atomic clocks are old news. They’ve been quietly keeping our world on schedule for decades now, and have been through several iterations with each generation gaining more accuracy. They generally all work under the same physical principle though — a radio signal stimulates a gas at a specific frequency, and the response of the gas is used to tune the frequency. This yields high accuracy and high precision — the spacing between each “tick” of an atomic clock doesn’t vary by much, and the ticks cumulatively track the time with very little drift.

All of this had [alnwlsn] thinking about whether he could make an “atomic” clock that measures actual radioactive decay, rather than relying on the hyperfine transition states of atoms. Frustratingly, most of the radioactive materials that are readily available have pretty long half-lives — on the order of decades or centuries. Trying to quantify small changes in the energy output of such a sample over the course of seconds or minutes would be impossible, so he decided to focus on the byproduct of decay — the particles being emitted.

He used a microcontroller to count clicks from a Geiger-Müller tube, and used the count to calculate elapsed time by multiplying by a calibration factor (the expected number of clicks per second). While this is wildly inaccurate in the short term (he’s actually used the same system to generate random numbers), over time it smooths out and can provide a meaningful reading. After one year of continuous operation, the counter was only off by about 26 minutes, or 4.4 seconds per day. That’s better than most mechanical wristwatches (though a traditional Rubidium atomic clock would be less than six milliseconds off, and NIST’s Strontium clock would be within 6.67×10-11 seconds).

The end result is a probabilistic radiometric timepiece that has style (he even built a clock face with hands, rather than just displaying the time on an LCD). Better yet, it’s got a status page where you can check on on how it’s running. We’ve seen quite a few atomic clocks over the years, but this one is unique and a great entry into the 2025 One Hertz Challenge.

2025 One Hertz Challenge: Timekeeping At One Becquerel

The Becquerel (Bq) is an SI unit of radioactivity: one becquerel is equivalent to one radioactive decay per second. That absolutely does not make it equivalent to one hertz — the random nature of radioactive decay means you’ll never get one pulse every second — but it does make it interesting. [mihai.cuciuc] certainly thought so, when he endeavored to create a clock that would tick at one becquerel.

The result is an interesting version of a Vetinari Clock, first conceived of by [Terry Pratchett] in his Discworld books. In the books, the irregular tick of the clock is used by Lord Vetinari as a form of psychological torture. For some reason, imposing this torture on ourselves has long been popular amongst hackers.

Without an impractical amount of shielding, any one-becquerel source would be swamped by background radiation, so [mihai] had to get creative. Luckily, he is the creator of the Pomelo gamma-ray spectroscope, which allowed him to be discriminating. He’s using an Am-241 source, but just looking for the characteristic 59.5 KeV gamma rays was not going to cut it at such a low count rate. Instead he’s using two of the Pomelo solid-state scintillation as a coincidence detector, with one tuned for the Am-241’s alpha emissions. When both detectors go off simultaneously, that counts as an event and triggers the clock to tick.

How he got exactly one becquerel of activity is a clever hack, too. The Am-241 source he has is far more active than one decay per second, but by varying the distance from the gamma detector he was able to cut down to one detection per second using the inverse square law and the shielding provided by Earth’s atmosphere. The result is a time signal that is a stable one hertz… if averaged over a long enough period. For now, anyway. As the Am-241 decays away, its activity decreases, and [mihai] admits the clock loses about 0.4 seconds per day.

While we won’t be giving the prize for accuracy in this contest, we are sure Lord Vetinari would be proud. The Geiger-counter sound effect you can hear in the demo video embedded below is great touch. It absolutely increases the psychic damage this cursed object inflicts.

Continue reading “2025 One Hertz Challenge: Timekeeping At One Becquerel”

2025 One Hertz Challenge: Digital Clock Built With Analog Timer

You can use a microcontroller to build a clock. After all, a clock is just something that counts the passage of time. The only problem is that microcontrollers can’t track time very accurately. They need some kind of external timing source that doesn’t drift as much as the microcontroller’s primary clock oscillator. To that end, [Josh] wanted to try using a rather famous IC with his Arduino to build a viable timepiece.

[Josh]’s idea was straightforward—employ a 555 timer IC to generate a square wave at 1 Hz. He set up an Arduino Uno to count the pulses using edge detection. This allowed for a reliable count which would serve as the timebase for a simple 24-hour clock. The time was then displayed on an OLED display attached over I2C, while raw pulses from the 555 were counted on a 7-segment display as a useful debugging measure. Setting the time is easy, with a few pushbuttons hooked up to the Arduino for this purpose.

[Josh] claims a drift of “only ~0.5 seconds” but does not state over what time period this drift occurs. In any case, 555s are not really used for timekeeping purposes in this way, because timers based on resistor-capacitor circuits tend to drift a lot and are highly susceptible to temperature changes. However, [Josh] could easily turn this into a highly accurate clock merely by replacing the 555 square wave input with a 1PPS clock source from another type of timer or GPS device.

We’ve had quite a few clocks entered into the One Hertz Competition already, including this hilariously easy Nixie clock build. You’ve got until August 19 to get your own entry in, so wow us with your project that does something once a second!