Mechanical Timekeeping Hack Chat With Clickspring

Join us on Wednesday, February 3 at noon Pacific for the Mechanical Timekeeping Hack Chat with Clickspring!

The reckoning of the passage of time has been of vital importance to humans pretty much for all our history, but for most of that time we were stuck looking at the movements of heavenly bodies or noting the changing of the seasons to answer questions of time. The search for mechanical aids to mark the passage of time began surprisingly early, though, pretty much from the time our ancestors first learned to work with metals.

Timekeeping devices were often created to please a potentate or to satisfy a religious imperative, but whatever the reason for their invention, these early clocks and calendars were key to a ton of discoveries. Timekeeping devices were among the first precision mechanisms, and as such formed the basis of much of our mechanical world. A mechanical representation of the passage of time also gave us some of the first precise observations of the physical world, which led to an enormous number of discoveries about the nature of the universe, not to mention practical skills such as navigation, which allowed us to explore the world with greater confidence.

In our era, precision timekeeping has moved beyond the mechanical realm into the subatomic world, and mechanisms built to please a prince are relegated to museums and collectors. That’s not to say there isn’t plenty to learn from the building of mechanical timepieces, as anyone who has watched any of the videos on Clickspring’s YouTube channel can attest. Clickspring not only makes some magnificent modern timepieces, like his famous open-frame clock, but recently he’s also branched out into the timekeeping mechanisms of the ancients. He built a reproduction Byzantine sundial-calendar, and tackled a reproduction of the famous Antikythera mechanism. The latter was undertaken using only the tools and materials that would have been available to the original maker. That led to an unexpected discovery and a detour into the world of scholarly publishing.

Clickspring has been busy lately, but he made some time to stop by the Hack Chat and talk about mechanical timepieces. We’ll talk about his modern builds, his forays into the mechanisms of antiquity, and his serendipitous discovery. On the way we’re likely to talk about what it takes to build precision mechanisms in a small shop, and whatever else that crops up.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, February 3 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “Mechanical Timekeeping Hack Chat With Clickspring”

For Your Holiday Relaxation: The Clickspring Sundial Build Megacut

The fortunate among us may very well have a bit of time off from work coming up, and while most of that time will likely be filled with family obligations and festivities, there’s probably going to be some downtime. And if you should happen to find yourself with a half hour free, you might want to check out the Clickspring Byzantine Calendar-Sundial mega edit. And we’ll gladly accept your gratitude in advance.

Fans of machining videos will no doubt already be familiar with Clickspring, aka [Chris], the amateur horologist who, through a combination of amazing craftsmanship and top-notch production values, managed to make clockmaking a spectator sport. We first caught the Clickspring bug with his open-frame clock build, which ended up as a legitimate work of art. [Chris] then undertook two builds at once: a reproduction of the famous Antikythera mechanism, and the calendar-sundial seen in the video below.

The cut condenses 1,000 hours of machining, turning, casting, heat-treating, and even hand-engraving of brass and steel into an incredibly relaxing video. There’s no narration, no exposition — nothing but the sounds of metal being shaped into dozens of parts that eventually fit perfectly together into an instrument worthy of a prince of Byzantium. This video really whets our appetite for more Antikythera build details, but we understand that [Chris] has been busy lately, so we’ll be patient.

Continue reading “For Your Holiday Relaxation: The Clickspring Sundial Build Megacut”

Hacker’s Discovery Changes Understanding Of The Antikythera Mechanism

With all the trained academics who have pored over the Antikythera mechanism in the 120 years since it was pulled from the Mediterranean Sea, you’d think all of the features of the ancient analog computer would have been discovered by now. But the mechanism still holds secrets, some of which can only be appreciated by someone in tune with the original maker of the device. At least that what appears to have happened with the recent discovery of a hitherto unknown lunar calendar in the Antikythera mechanism. (Video, embedded below.)

The Antikythera mechanism is fascinating in its own right, but the real treat here is that this discovery comes from one of our own community — [Chris] at Clickspring, maker of amazing clocks and other mechanical works of art. When he undertook a reproduction of the Antikythera mechanism using nothing but period-correct materials and tools four years ago, he had no idea that the effort would take the direction it has. The video below — also on Vimeo — sums up the serendipitous discovery, which is based on the unusual number of divisions etched into one of the rings of the mechanisms. Scholars had dismissed this as a mistake, but having walked a mile in the shoes of the mechanism’s creator, [Chris] knew better.

The craftsmanship and ingenuity evidenced in the original led [Chris] and his collaborators to the conclusion that the calendar ring is actually a 354-day calendar that reflects a lunar cycle rather than a solar cycle. The findings are summarized in a scholarly paper in the Horological Journal. Getting a paper accepted in a peer-reviewed journal is no mean feat, so hats off to the authors for not only finding this long-lost feature of the Antikythera mechanism and figuring out its significance, but also for persisting through the writing and publication process while putting other projects on hold. Clickspring fans have extra reason to rejoice, too — more videos are now on the way!

Continue reading “Hacker’s Discovery Changes Understanding Of The Antikythera Mechanism”

The Story Of A Secret Underground Parisian Society

Deep in the heart of Paris, a series of underground tunnels snakes across the city. They cross into unkept public spaces from centuries ago that have since vanished from collective memory – abandoned basements, catacombs, and subways hundreds of miles apart.

Only a few groups still traverse these subterranean streets. One that came into public view a few years ago, Les UX (Urban eXperiment), has since claimed several refurbished developments, including restoring the long neglected Pantheon clock and building an underground cinema, complete with a bar and restaurant.

While the streets of Paris are tame during the day, at night is when Les UX really comes alive. A typical night might involve hiding in the shadows away from potential authorities roaming the streets, descending into the tunnels through a grate in the road, and carrying materials to an agreed upon drop off location. Other nights might involve wedging and climbing over pipes and ladders, following the routes into the basements of buildings left unguarded.
Continue reading “The Story Of A Secret Underground Parisian Society”

All Things Enigma Hack Chat

Join us Wednesday at noon Pacific time for the All Things Enigma Hack Chat!

This week’s Hack Chat is a bit of a departure for us because our host, Simon Jansen, has tackled so many interesting projects that it’s hard to settle on one topic. Simon is a multidisciplinary hacker whose interests run the gamut from building an ammo-can Apple ][ to a literal steampunk Rickroller. How about a Bender Brewer? Or a MAME in a TARDIS? Or perhaps making an old phone play music to restore a car by? Oh, and remember that awesome ASCII animation of Star Wars: Episode IV? That was Simon.

So, a little hard to choose a topic, but we asked Simon to talk a bit about his recent Enigma watches. He has managed to put an electronic emulation of the Enigma cypher machine from World War II into both a wristwatch and, more recently, a pocket watch. They’re both gorgeous builds that required a raft of skills to complete. We’ll start there and see where the conversation takes us!

Please join us for this Hack Chat, where we’ll discuss:

  • Where the fascination with Enigma came from;
  • Tools, techniques, and shop setup;
  • Melding multiple, disparate skill sets; and
  • What sorts of new projects might we see soon?

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the All Things Enigma Hack Chat and we’ll put that in the queue for the Hack Chat discussion.

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, February 27, at noon, Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

An Arduino Wrapped In An OLED Wrapped Inside An Enigma Pocket Watch

A pocket watch, tucked into a waistcoat pocket and trailing a long chain, is a retro-hip accessory. A pocket watch gutted of its mechanical innards and updated as a smart appliance might be a horological abomination, but would still be a cool hack. A pocket watch converted to a digital Enigma machine is in a class all by itself.

[Simon] admits that he has a thing for pocket timepieces, having a sizable collection of old and not-so-old watches, some that even serve for everyday carry. Trouble is, they eventually break, and qualified watchmakers are getting hard to come by. So refitting defunct watches has become a hobby for him, and this example is a doozy. It uses an Enigma emulator running on an Arduino, similar to one that he stuffed into a somewhat oversized wristwatch a few years ago. Fitting it into a pocket watch case required a bit of finagling, including a 0.5-mm thick main PCB that flexes a bit to fit the contours of the case. A small OLED screen peeks through the front bezel, which is done up in an attractive black crinkle finish with brass buttons for a nice retro look. There’s even an acid-etched brass badge on the front cover with his special logo, complete with a profile of the original Enigma rotors.

Very impressive workmanship, and we don’t even care that it doesn’t tell time. Need a little background on the original Enigma? [Steve Dufresne] did a great job going through the basics a while back.

Continue reading “An Arduino Wrapped In An OLED Wrapped Inside An Enigma Pocket Watch”

Gyrotourbillion Blesses The Eyes, Hard To Say

Clock movements are beautifully complex things. Made up of gears and springs, they’re designed to tick away and keep accurate time. Unfortunately, due to the vagaries of the universe, various sources of error tend to creep in – things like temperature changes, mechanical shocks, and so on. In the quest for ever better timekeeping, watchmakers decided to try and rotate the entire escapement and balance wheel to counteract the changing effect of gravity as the watch changed position in regular use.

They’re mechanical works of art, to be sure, and until recently, reserved for only the finest and most luxurious timepieces. As always, times change, and tourbillions are coming down in price thanks to efforts by Chinese manufacturers entering the market with lower-cost devices. But hey – you can always just make one at home.

That’s right – it’s a 3D printed gyrotourbillion! Complete with a 3D printed watch spring, it’s an amazing piece of engineering that would look truly impressive astride any desk. All that’s required to produce it is a capable 3D printer and some off-the-shelf bearings and you’ve got a horological work of art.

It’s not the first 3D-printed tourbillion we’ve seen, but we always find such intricate builds to be highly impressive. We can’t wait to see what comes next – if you’re building one on Stone Henge scale for Burning Man, be sure to let us know. Video after the break.

[Thanks to Keith for the tip!]

Continue reading “Gyrotourbillion Blesses The Eyes, Hard To Say”