Bluetooth Hack For Serioux Panda Speakers

bluetooth-powered-panda-speakers

[Bogdan] received this set of Serioux Panda speakers as a gift. I turns out that they sound very good and he decided to make them more useful to him by converting them to work as Bluetooth speakers.

To begin with he bought the cheapest A2DP device he could find. This is the protocol that identifies a Bluetooth audio device. The unit is designed to provide a Bluetooth connection for a set of headphones. He patched into the headphone port on that board, but also wanted to keep the option of using the Panda speakers’ line-in. To do this he added a 1k resistor to each of the audio channels. A connection was made from the 5V rail of the speakers to power the Bluetooth module rather than leaving it with its own battery.

Speaking of batteries, the Panda speakers can run from three AAA cells. This battery compartment was a perfect place to mount the add-on hardware. But the speaker can still be powered from a USB connector. Above [Bogdan] is using a portable USB power supply.

Raspberry Pi Used As A Squeezebox Server

rpi-squeezebox-server

[Jacken] loves his lossless audio and because of that he’s long been a fan of Squeezebox. It makes streaming the high-bitrate files possible. But after Logitech acquired the company he feels they’ve made some choices which has driven the platform into the ground. But there is hope. He figured out how to use a Raspberry Pi as a Squeezebox server so that he can keep on using his client devices and posted details about the RPi’s performance while serving high-quality audio.

First the bad news: the RPi board doesn’t have the horsepower necessary to downsample on the fly. He even tried overclocking but that didn’t really help. The good news is that this issue only affects older Squeezebox clients (he had the issue with V3) and only when playing tracks that are much higher quality than a CD (24-bit at 88.2Khz). He has no problem streaming those files to devices that can play them, and can even stream multiple files at once without any issues.

You can install the Sqeezebox server on your own Raspberry Pi by following this guide.

Portable Audio Rig That Turned Out Great

portable-audio-rig

[Michael] wanted a stereo that he could use outside, be it at the beach, beside the pool, or while tailgating. He decided to build this boom box himself, and didn’t cut any corners when it came to a professional looking finish.

Because of the locale in which he plans to use the stereo he went with a set of marine speakers. They’ll have no problem standing up to water, and since they’re used in boats they should also be able to take a beating during transport. To feed it he uses a Lepai T amp which is seen above.

After cutting each piece of the case out of MDF he started working on the openings to receive the components. This involved quite a number of layout lines and some work with a compass to map out the circular openings. He built a recessed panel on the back to interface the power cord for charging. Inside is an 18 Ah battery. A set of switches lets him turn on the charger and choose between powering the amp from battery or from the power cord.

[via Reddit]

Color LED Matrix VU Meter Shows How To Use FFT With Arduino

If you’ve ever wanted to make your own VU meter but were scared off by the signal process you need to study this tutorial.

Hackaday Alum [Phil Burgess] developed the device using an RGB LED matrix, microphone, and an Arduino. You’ll notice that is doesn’t include an MSGEQ7 chip which we see in most of these types of projects. We have seen a few that use the Fast Fourier Transform to map the audio signal on the display as this one does. But [Phil’s] choice of an assembly language Library for ATmega chips makes this really simple to roll into your own projects.

The one drawback to the hardware choices made here is that there are only eight bits of vertical resolution. It takes a little creative interpretation to make this look good, but the use of color mixing really makes a difference. See for yourself in the demo after the break.

Continue reading “Color LED Matrix VU Meter Shows How To Use FFT With Arduino”

MOD Player For The Stellaris Launchpad

[Ronen K.] wrote in to tell us about the MOD playing Stellaris Launchpad project he recently completed. A MOD is a sound file for the computers of days long gone. But you’ll certainly recognize the sound of the 8-bit goodness that is coming out of this device.

To understand how a MOD file stores samples you might want to glance at the Wikipedia page. There are a ton of these files out there, but this implementation is meant for files with only four channels. For now the only external hardware used is an audio jack which needs a ground connection and a PWM signal on each of the two audio channels. [Ronen] is storing the files in flash memory rather than using an SD card or other external storage. This leaves 213k of space for up to six files that can be selected by the user buttons which cycle forward or backward through the list. See this demonstrated after the break.

The project ports existing code from an STM32 application. Since that is also an ARM microcontroller there’s not a ton of work that needed to be done. But he did have to write all of the PWM functionality for this chip. This PWM tutorial turned out to be very helpful during that process.

Continue reading “MOD Player For The Stellaris Launchpad”

Internet Radio Occupies An 80-year-old Radio Case

[Florian Amrhein] made use of some old hardware to build his own internet radio in a 1930’s radio case.

The original hardware is a tube-amplified radio which he picked up on eBay. There’s tons of room in there once he removed the original electronics and that’s a good thing because he crammed a lot of new parts into the build. The main one being an old laptop he had on hand. It’s got a 10″ screen which is too large for the opening, but that ended up being okay. He coded an interface with C and SDL which give him a visual representation of his favorite online streams. The knob to the right moves the red line when turned and causes the Debian box to change to the new stream using the Music Player Daemon. Two potentiometers control the tuning and volume, and there is also a rotary encoder which is not yet in use. All three are connected to the laptop via an Arduino.

Check out the finished product in the video after the break. It sounds quite good thanks to the small automotive speaker and amplifier also crammed into the old case.

If you don’t have a laptop lying around to use in a project like this consider a microcontroller and character LCD based system.

Continue reading “Internet Radio Occupies An 80-year-old Radio Case”

Headphone Light Show

Seriously, nothing says ‘Look at me!’ like these headphones. [Yardley Dobon] added a rainbow of colored electroluminescent wire to his headphones and made them pulse to the music. The video after the break shows the headphones bumping to the tunes. This is one of two versions of the project, the other runs the EL wire along the headphone wire itself. We’re a bit surprised that the high frequency from that parallel run doesn’t inject noise into the signal. We do enjoy seeing these in action, but in practice observers unfortunately won’t be able to hear the tunes to which the lights are pulsing.

It took us a little while to figure out that [Yardley] didn’t roll his own VU hardware. The inverter driving the EL wire is designed to bump to the music. But he did hack it to use an audio line rather than a microphone. He mentions that this has other uses, like allowing carefully crafted sound clips to precisely control the inverter.

Continue reading “Headphone Light Show”