Upgrading An Old Macbook With An Old Processor

The Core Duo processor from Intel may not have been the first multi-core processor available to consumers, but it was arguably the one that brought it to the masses. Unfortunately, the first Core Duo chips were limited to 32-bit at a time when the industry was shifting toward 64-bit. The Core 2 Duo eventually filled this gap, and [dosdude1] recently completed an upgrade to a Macbook Pro that he had always wanted to do by replacing the Core Duo processor it had originally with a Core 2 Duo from a dead motherboard.

The upgrade does require a bit more tooling than many of us may have access too, but the process isn’t completely out of reach, and centers around desoldering the donor processor and making sure the new motherboard gets heated appropriately when removing the old chip and installing the new one. These motherboards had an issue of moisture ingress which adds a pre-heating step that had been the cause of [dosdude1]’s failures in previous attempts. But with the new chip cleaned up, prepared with solder balls, and placed on the new motherboard it was ready to solder into its new home.

Upon booting the upgraded machine, the only hiccup seemed to be that the system isn’t correctly identifying the clock speed. A firmware update solved this problem, though, and the machine is ready for use. For those who may be wondering why one would do something like this given the obsolete hardware, we’d note that beyond the satisfaction of doing it for its own sake these older Macbooks are among the few machines that can run free and open firmware, and also that Macbooks that are a decade or older can easily make excellent Linux machines even given their hardware limitations.

Continue reading “Upgrading An Old Macbook With An Old Processor”

5K IMac Turned Into 5K Display

While Apple weren’t the first to invent high-DPI displays or to put them into consumer electronics, they did popularize them fairly effectively with the Retina displays in the early 2010s and made a huge number of them in the following years. The computers they’re attached to are getting up there in age, though, and although these displays are still functional it isn’t quite as straightforward to use them outside of their Apple-approved use. [David] demonstrates one way of getting this done by turning a 5k iMac into an external monitor.

The first attempt at getting a usable monitor from the old iMac was something called a Luna Display, but this didn’t have a satisfying latency. Instead, [David] turned to replacing the LCD driver board with a model called the R1811. This one had a number of problems including uneven backlighting, so he tried a second, less expensive board called the T18. This one only has 8-bit color instead of the 10-bit supported by the R1811 but [David] couldn’t personally tell the difference, and since it solved the other issues with the R1811 he went with this one. After mounting the new driver board and routing all of the wires, he also replaced the webcam with an external Logitech model and upgraded the speakers as well.

Even when counting the costs for both driver boards, the bill for this conversion comes in well under the cost of a new monitor of comparable quality from Apple, a company less concerned about innovation these days than overcharging their (admittedly willing) customers. For just a bit of effort, though, these older iMacs and other similar Apple machines with 5k displays can be repurposed to something relatively modern and still usable. Others have done similar projects and funded the upgrades by selling off the old parts.

A Much Faster Mac On A Microcontroller

Emulating older computers on microcontrollers has been a staple of retrocomputing for many years now, with most 8-bit and some 16-bit machines available on Atmel, ARM, or ESP32 platforms. But there’s always been a horsepower limit, a point beyond which a microcontroller is no longer enough, and a “proper” computer is needed. One of those barriers now appears to have been broken, as microcontroller-based emulation moves into the 32-bit era. [Amcchord] has the Basilisk II emulator ported to the ESP32-P4 platform, providing a 68040 Mac able to run OS8.1. This early-1990s-spec machine might not seem like much in 2026, but it represents a major step forward.

The hardware it uses is the M5Stack Tab5, and it provides an emulated Mac with up to 16 MB of memory. Remember, in 1992 this would have been a high-spec machine. It manages a 15 frames per second refresh rate, which is adequate for productivity applications. The emulator uses the Tab5’s touchscreen to emulate the Mac mouse alongside support for USB input devices. To 1990 hackers, it’s almost the Mac tablet you didn’t know you would want in the future.

We like this project, both because it’s advancing the art of emulation on microcontrollers, and also because it delivers a computer that’s useful for some of the things you might have done with a Mac in 1992 and could even do today. Pulling this out on the train back then would have blown people’s minds. There’s even a chance that MacOS on something like this would turn a few heads in 2026. It’s certainly not the first emulated Mac we’ve seen though.

A computer monitor which was formerly an iMac G4 with a hemispherical white base sits on a table. The table and wall are likely white, but pink light is washing the scene making them and the monitor base appear pink. An iPhone sits above a piece of rounded plastic jutting out from the monitor base.

G4 IMac Becomes A Monitor With A MagSafe Secret

The G4 iMac is one of the more popular computers in the restomodding scene given its charm and unparalleled ergonomics. Most modern machines that people squeeze in don’t have a disc drive anymore though, so [EasternBloc Engineering] has fitted a retractable MagSafe charger into the drive bay of the machine.

In this example, the iMac has become simply a monitor, instead of an entire all-in-one computer, and the original 15″ display has been replaced with a lightweight 22″ monitor on a 3D printed VESA mount. The narrow confines of the iMac neck meant [EasternBloc Engineering] had to sever the connectors from the HDMI and power cable before reconnecting them once they were fed through.

The really novel part of this restomod is the engineering of the retractable MagSafe charger mount that pops out of the drive bay. [EasternBloc Engineering] started by looking at repurposing an original disc drive, but quickly turned to a bespoke 3D printed solution. Using a LEGO motor and gears for the drive, the system can stick its tongue out at you in a more modern way. A straight in-and-out mechanism like on an original disc drive would’ve been easier to implement, but we appreciate the extra time for angling the phone that respects the ergonomics of the machine. We hope the files will become available soon for this part of the mod since electromechanical components are more interesting than the VESA mount.

We’ve taken a look at how to implement MagSafe (or Qi2) into your own projects and also a few different G4 iMac restomods whether you prefer Apple Silicon or a PC-based approach.

Continue reading “G4 IMac Becomes A Monitor With A MagSafe Secret”

Mac System 7 On A G4? Why Not!

Over the many years Apple Computer have been in operation, they have made a success of nearly-seamlessly transitioning multiple times between both operating systems and their underlying architecture. There have been many overlapping versions, but there’s always a point at which a certain OS won’t run on newer hardware. Now [Jubadub] has pushed one of those a little further than Apple intended, by persuading classic Mac System 7 to run on a G4.

System 7 was the OS your Mac would have run some time in the mid ’90s, whether it was a later 68000 machine or a first-gen PowerMac. In its day it gave Windows 3.x and even 95 a run for their money, but it relied on an older Mac ROM architecture than the one found on a G4. The hack here lies in leaked ROMS, hidden backwards compatibility, and an unreleased but preserved System 7 version originally designed for the ’90s Mac clone programme axed by Steve Jobs.  It’s not perfect, but they achieved the impossible.

As to why, it seems there’s a significant amount of software that needs 7 to run, something mirrored in the non-Mac retrocomputing world. Even this hack isn’t the most surprising System 7 one we’ve seen recently, as an example someone even made a version for x86 machines.


Thumbnail Image Art: Apple PowerMac G4 by baku13, CC BY-SA 3.0

RavynOS: Open Source MacOS With Same BSD Pedigree

That macOS (formerly OS X) has BSD roots is a well-known fact, with its predecessor NeXTSTEP and its XNU kernel derived from 4.3BSD. Subsequent releases of OS X/macOS then proceeded to happily copy more bits from 4.4BSD, FreeBSD and other BSDs.

In that respect the thing that makes macOS unique compared to other BSDs is its user interface, which is what the open source ravynOS seeks to address. By taking FreeBSD as its core, and crafting a macOS-like UI on top, it intends to provide the Mac UI experience without locking the user into the Apple ecosystem.

Although FreeBSD already has the ability to use the same desktop environments as Linux, there are quite a few people who prefer the Apple UX. As noted in the project FAQ, one of the goals is also to become compatible with macOS applications, while retaining support for FreeBSD applications and Linux via the FreeBSD binary compatibility layer.

If this sounds good to you, then it should be noted that ravynOS is still in pre-release, with the recently released “Hyperpop Hyena” 0.6.1 available for download and your perusal. System requirements include UEFI boot, 4+ GB of RAM, x86_x64 CPU and either Intel or AMD graphics. Hardware driver support for the most part is that of current FreeBSD 14.x, which is generally pretty decent on x86 platforms, but your mileage may vary. For testing systems and VMs have a look at the supported device list, and developers are welcome to check out the GitHub page for the source.

Considering our own recent coverage of using FreeBSD as a desktop system, ravynOS provides an interesting counterpoint to simply copying over the desktop experience of Linux, and instead cozying up to its cousin macOS. If this also means being able to run all macOS games and applications, it could really propel FreeBSD into the desktop space from an unexpected corner.

Optimizing A QuickTake Image Decoder For The Apple II’s 6502

The idea of using the Apple II home computer for digital photography purposes may seem somewhat daft considering that this is not a purpose that they were ever designed for, yet this is the goal that [Colin Leroy-Mira] had, requiring some image decoder optimizations. That said, it’s less crazy than one might assume at first glance, considering that the Apple II was manufactured until 1993, while the Apple QuickTake digital cameras that [Colin] wanted to use for his nefarious purposes saw their first release in 1994.

These QuickTake cameras feature an astounding image resolution of up to 640×480, using 24-bit color. Using the official QuickTake software for Apple Macintosh System 7 through 9 the photographs in proprietary QTK format could be fetched for display and processing. Doing the same on an Apple II would obviously require a bit more work, not to mention adapting of the image to the limitations of the 8-bit Apple II compared to the Motorola 68K and PowerPC-based Macs that the QuickTake was designed to be used with.

Targeting the typical ~1 MHz 6502 CPU in an Apple II, the dcraw QTK decoder formed the basis for an initial decoder. Many memory and buffer optimizations later, an early conversion to monochrome and various other tweaks later – including a conversion to 6502 ASM for speed reasons – the decoder as it stands today manages to decode and render a QTK image in about a minute, compared to well over an hour previously.

Considering how anemic the Apple II is compared to even a budget Macintosh Classic II system, it’s amazing that displaying bitmap images works at all, though [Colin] reckons that more optimizations are possible.