Adaptive Technology Used To Fly An IR Helicopter

adaptive-tech-controlled-helicopter

This gentleman is using electrical impulses from his neck muscles to fly a toy helicopter around the room. The project is a demonstration of the AsTeRICS project which seeks to reduce the complexity of adapting the set of skills a disabled person can use to do a wide range of functions. In this case, controlling the helicopter could easily be switched to other tasks without changing the user interface hardware.

One of the plugins for the AsTeRICS project uses the OpenEEG library. This reads the signals coming from a pair of electrodes on top of each shoulder. In the video after the break you can see that as he flexes these muscles the changes in signal are mapped to the altitude of the helicopter. This is just one example of a wide range of inputs that include things like building a webcam-based mouse or using  facial recognition.

The toy itself is being driven by an Arduino sending IR commands. We’ve seen quite a few project where the helicopter communications protocols are laid bare.

Continue reading “Adaptive Technology Used To Fly An IR Helicopter”

Build A Bioprinter From Very Old Inkjet Cartridges

This column of messages was printed with Escherichia coli. That’s the bacteria better known as E. coli which can cause so many problems if it makes its way into our food. But the relative size and the fact that this strain was engineered to glow in the dark makes it a perfect candidate for Bio Printing. We find it even more interesting that it was printed using hacked inkjet and computer parts.

There are legitimate uses for this type of technology. But this project is aimed more at getting the word out about the method and how easy it can be. For us, it’s the close look at modern inkjet print heads that was the most interesting. It turns out that common cartridges have an overly high-resolution for this to work well. In order to get so many dots in such a small area the nozzle openings end up being too small for most biological material to fit through. There is also an issue with a filter built into the silicone technology inside.

The solution was to use the InkShield to drive cartridges from very old printers. This lets the team command the cartridge with an Arduino, making it dead simple to tweak the way the material is deposited. They mounted the cartridge holder (using decades-old technology in the form of HP Deskjet 500 cartridges) on the sled of an optical drive and went from there.

Take a glance at the printer in action in the clip after the break.

Continue reading “Build A Bioprinter From Very Old Inkjet Cartridges”

Hot Air Rework Doubles As An Herbal Bag Vaporizer

hot-air-rework-bag-vaporizer

This hot air rework station is being used for more than just soldering surface mount components. Since it has settings for temperature and airflow [BrokeHippieTech] figured it would work as a bag vaporizer. In the video after the break they show off the custom parts and then take it though and herbal blend bag fill.

The hot air station comes with several different tips. The smallest one was used to mount a vaporizer bowl using high-temperature JB Weld. On the output side of the bowl a metal stem was also affixed to interface with the mouthpiece of a vaporizer bag. The heat from the rework station brings the herbs just below the combustion point, releasing the active ingredients without including the harmful byproducts associated with smoking.

We’re putting this one under medical hacks because we hope it’s being used responsibly and legally. As with the last vaporizer build we looked at, we have concerns about what else the apparatus may be putting into the collected gases.

Continue reading “Hot Air Rework Doubles As An Herbal Bag Vaporizer”

Fitting A Cold, Metal Heart In An Altoids Tin

sim

[James] has been building a heart rate monitor using a very cool TI chip. He needed a way to test his device, and commercial ECG simulators, like all biotech devices, are absurdly expensive. [James] decided to build his own heart rate simulator, and in the process made a great tool and one of the most well documented projects we’ve ever seen.

Of course, if you’re building an ECG simulator, you’re going to need a good sample of a heart’s electrical pattern. To get this sample, [James] found an old army manual with a diagram of an ideal ECG pattern. [James] took this PDF manual, screen capped the diagram, and used a Python script to generate an array in C the Arduino could repeat over and over.

The rest of the build consisted of a D/A converter, a pot to change the heart rate, a very nice seven-segment display, and a few banana jacks to connect to [James]’ heart monitor. Everything is up in a git, including an amazingly well documented (87 pages!) tutorial for building your own Arduino heart simulator.

[Ben Krasnow] Builds A CT Scanner

gif

After building a homebrew x-ray backscatter imager, [Ben Krasnow] realized he had nearly all the components to build his own CT scanner, able to make a 3D model of the inside of a frozen chicken.

Basically, a CT scanner takes dozens of x-rays of an object and reassembles them with the help of fancy algorithms to allow doctors to peer inside a human body. The CT scanners you’ll find at your local hospital are monstrous devices, rotating an x-ray tube and sensor around a patient with the help of some very heavy duty electromechanical engineering. [Ben] wanted to keep his build rather small, so instead of rotating the x-ray tube and screen around an object, he simply made a stepper motor-driven lazy suzan to rotate his frozen bird.

[Ben] set a digital camera off to the side of his build and captured 45 images of a rotating chicken. After correcting for the perspective distortion, the images were thrown into 3D Slicer to create a true 3D representation of a x-rayed chicken.

Continue reading “[Ben Krasnow] Builds A CT Scanner”

Modifying An EEG Headset For Lucid Dreaming

moddedmindwave4

[Michael], [Tom], and a few other people on the Lucid Scribe Database project have been using off-the-shelf EEG equipment to invoke lucid dreaming. Yes, that’s where you take control of your dreams and become a god. This requires wearing an EEG setup while you sleep, and these products aren’t very comfortable sleeping wear. [Tom] decided to take apart a NeuroSky MindWave and turn it into something comfortable to wear all night.

The folks at the Lucid Scribe Database log their dreams with consumer-level EEG equipment, usually something made by NeuroSky. The NeuroSky MindWave is the smallest and cheapest EEG headset available, but it’s still a hard plastic device not conducive to sleeping.

[Tom] removed all the guts and electronic goodies out of his MindWave and attached them to an elastic headband. The MindWave has two sensors – a forehead and ear lobe sensor. For the forehead sensor, [Tom] simply soldered a piece of wire to a penny and attached it to the elastic. The ear lobe sensor in the stock MindWave is a simple clip that was kept in the stock configuration for [Tom]’s mod.

Now that [Tom] has a much more comfortable EEG setup, he can get on with improving his lucid dreaming skills and even try communicating via Morse from inside a dream.

Pulse Oximeter Displays Blood Oxygen Levels On A PC

The last time you were in the emergency room after a horrible accident involving a PVC pressure vessel, a nurse probably clipped a device called a pulse oximeter onto one of your remaining fingers. These small electronic devices detect both your pulse and blood oxygen level with a pair of LEDs and a photosensor. [Anders] sent in a great tutorial for building your own pulse oximeter using a fancy ARM dev board, but the theory behind the operation of this device can be transferred to just about any microcontroller platform.

The theory behind a pulse oximeter relies on the fact that hemoglobin absorbs red and infrared light differently based on its oxygenation levels. By shining a red and IR LED through a finger onto a photoresistor, it’s possible to determine a person’s blood oxygen level with just a tiny bit of math.

Of course a little bit of hardware needs to be thrown into the project; for this, [Anders] used an EMF32 Gecko starter kit, a great looking ARM dev board. After connecting the LEDs to a few transistors and opamps, [Anders] connected his sensor circuit to the ADC on the Gecko board. From here it was very easy to calculate his blood oxygen level and even display his pulse rate to a PC application.

Yes, for just the price of a dev board and a few LEDs, it’s possible to build your own medical device at a price far below what a commercial pulseox meter would cost. FDA approval not included.