Few Things Are Cheaper Than This Antenna

As far as hobbies go, ham radio tends to be on the more expensive side. A dual-band mobile radio can easily run $600, and a high-end HF base station with the capability of more than 100 watts will easily be in the thousands of dollars. But, like most things, there’s an aspect to the hobby that can be incredibly inexpensive and accessible to newcomers. Crystal radios, for example, can be built largely from stuff most of us would have in our parts drawers, CW QRP radios don’t need much more than that, and sometimes even the highest-performing antennas are little more than two lengths of wire.

For this specific antenna, [W3CT] is putting together an inverted-V which is a type of dipole antenna. Rather than each of the dipole’s legs being straight, the center is suspended at some point relatively high above ground with the two ends closer to the earth. Dipoles, including inverted-Vs, are resonant antennas, meaning that they don’t need any tuning between them and the radio so the only thing needed to match the antenna to the feed line is a coax-to-banana adapter. From there it’s as simple as attaching the two measured lengths of wire for the target band and hoisting the center of the antenna up somehow. In [W3CT]’s case he’s using a mast which would break the $8 budget, but a tree or building will do just as well.

The video on the construction of this antenna goes into great detail, so if you haven’t built a dipole yet or you’re just getting started on your ham radio journey, it’s a great place to get started. From there we’d recommend checking out an off-center-fed dipole which lets a dipole operate efficiently on multiple bands instead of just one, and for more general ham radio advice without breaking the bank we’d always recommend the $50 Ham series.

Continue reading “Few Things Are Cheaper Than This Antenna”

Homebrew Sferics Receiver Lets You Tune Into Earth Music

It probably comes as little surprise that our planet is practically buzzing with radio waves. Most of it is of our own making, with cell phones, microwaves, WiFi, and broadcasts up and down the spectrum whizzing around all the time. But our transmissions aren’t the only RF show in town, as the Earth itself is more than capable of generating radio signals of its own, signals which you can explore with a simple sferics receiver like this one.

If you’ve never heard of sferics and other natural radio phenomena, we have a primer to get you started. Briefly, sferics, short for “atmospherics,” are RF signals in the VLF range generated by the millions of lightning discharges that strike the Earth daily. Tuning into them is a pretty simple proposition, as [DX Explorer]’s receiver demonstrates. His circuit, which is based on a design by [K8TND], is just a single JFET surrounded by a few caps and resistors, plus a simple trap to filter out the strong AM broadcast signals in his area. The output of the RF amplifier goes directly into an audio amp, which could be anything you have handy — but you risk breaking [Elliot]’s heart if you don’t use his beloved LM386.

This is definitely a “nothing fancy” build, with the RF section built ugly style on a scrap of PCB and a simple telescopic whip used for an antenna. Tuning into the Earth’s radio signals does take some care, though. Getting far away from power lines is important, to limit AC interference. [DX Explorer] also found how he held the receiver was important; unless he was touching the ground plane of the receiver, the receiver started self-oscillating. But the pips, crackles, and pings came in loud and clear on his rig; check out the video below for the VLF action.

Continue reading “Homebrew Sferics Receiver Lets You Tune Into Earth Music”

Making PCB Strip Filter Design Easy To Understand

We’ve always been fascinated by things that perform complex electronic functions merely by virtue of their shapes. Waveguides come to mind, but so do active elements like filters made from nothing but PCB traces, which is the subject of this interesting video by [FesZ].

Of course, it’s not quite that simple. A PCB is more than just copper, of course, and the properties of the substrate have to be taken into account when designing these elements. To demonstrate this, [FesZ] used an online tool to design a bandpass filter for ADS-B signals. He designed two filters, one using standard FR4 substrate and the other using the more exotic PTFE.

He put both filters to the test, first on the spectrum analyzer. The center frequencies were a bit off, but he took care of that by shortening the traces slightly with a knife. The thing that really stood out to us was the difference in insertion loss between the two substrates, with the PTFE being much less lossy. The PTFE filter was also much more selective, with a tighter pass band than the FR4. PTFE was also much more thermostable than FR4, which had a larger shift in center frequency and increased loss after heating than the PTFE. [FesZ] also did a more real-world test and found that both filters did a good job damping down RF signals across the spectrum, even the tricky and pervasive FM broadcast signals that bedevil ADS-B experimenters.

Although we would have liked a better explanation of design details such as via stitching and trace finish selection, we always enjoy these lessons by [FesZ]. He has a knack for explaining abstract concepts through concrete examples; anyone who can make coax stubs and cavity filters understandable has our seal of approval.

Continue reading “Making PCB Strip Filter Design Easy To Understand”

Turning A Quansheng Handheld Into A Neat Desktop Transceiver

The Quansheng UV-K5 is a popular handheld radio. It’s useful out of the box, but also cherished for its modification potential. [OM0ET] purchased one of these capable VHF/UHF radios, but got to hacking—as he wanted to use it as a desktop radio instead!

This might just sound like a simple reshell, but there was actually a bit of extra work involved. Most notably, the Quansheng is designed to be tuned solely by using the keypad. For desktop use, though, that’s actually kind of a pain. Thus, to make life easier, [OM0ET] decided to whip up a little encoder control to handle tuning and other control tasks using an ESP32. This was achieved with help from one [OM0WT] and files for that are on Github. Other tasks involved finding a way to make the keypad work in a new housing, and how to adapt things like the audio and data module and the speaker to their new homes.

Despite the original handheld being much smaller than the case used here, you’d be surprised how tight everything fits in the case. Still, the finished result looks great. We’ve seen some other adaptable and upgradable ham radio gear before, too. Sometimes custom is the way to go! Video after the break.

Continue reading “Turning A Quansheng Handheld Into A Neat Desktop Transceiver”

A New Chinese Radio Breaks Cover, Is It Worth It?

Scanning the firehose of new electronic kits and modules coming from the usual Chinese suppliers can be a rewarding experience, as sometimes among the endless breakout boards comes an item that looks interesting enough to try. As an example there’s a receiver kit being given a quick review by [Tech Minds], offering AM and HF multi-mode, FM broadcast, and air band alongside what appear to be digital streaming features.

Looking at it, though all the RF part is hidden under screening cans we’re guessing it might contain one of the Silicon Labs all-in-one receiver chips, but the whole appears to deliver a useful receiver with a comprehensive interface. The review isn’t quite technical enough so we can’t glean a lot more, but it looks as though it could be useful. We’d be tempted to snag one for review, but since with very few exceptions we pay for the stuff we review, it’s a mite expensive at $50+ for yet another radio.

There’s an ongoing question with all these cheap kits and modules though, first of all where did the design come from and are we freeloading on someone else’s hard work, but then whether or not what you’re getting is a knock-off using defective semiconductors or with bean-counting parts removal degrading performance. We’re guessing more will come out about this radio in due course, and we can all make our own judgement. Meanwhile this one can be found on AliExpress or Banggood, so take a look and see if you’re tempted.

Continue reading “A New Chinese Radio Breaks Cover, Is It Worth It?”

RF Detector Chip Helps Find Hidden Cameras And Bugs

It’s a staple of spy thriller movies, that the protagonist has some kind of electronic scanner with which he theatrically searches his hotel room to reveal the bad guys’ attempt to bug him. The bug of course always had a flashing LED to make it really obvious to viewers, and the scanner was made by the props department to look all cool and futuristic.

It’s not so far-fetched though, while bugs and hidden cameras in for example an Airbnb may not have flashing LEDs, they still emit RF and can be detected with a signal strength meter. That’s the premise behind [RamboRogers]’ RF hunter, the spy movie electronic scanner made real.

At the rear of the device is an ESP32, but the front end is an AD8317 RF detector chip. This is an interesting and useful component, in that it contains a logarithmic amplifier such that it produces a voltage proportional to the RF input in decibels. You’ll find it at the heart of an RF power meter, but it’s also perfect for a precision field strength meter like this one. That movie spy would have a much higher chance of finding the bug with one of these.

For the real spies of course, the instruments are much more sophisticated.

Silent Antenna Tuning

If you want to deliver the maximum power to a load — say from a transmitter to an antenna — then both the source and the load need to have the same impedance. In much of the radio communication world, that impedance happens to be 50Ω. But in the real world, your antenna may not give you quite the match you hoped for. For that reason, many hams use antenna tuners. This is especially important for modern radios that tend to fold their power output back if the mismatch is too great to protect their circuitry from high voltage spikes. But a tuner has to be adjusted, and often, you have to put a signal out over the air to make the adjustments to match your antenna to your transmitter.

There are several common designs of antenna tuners, but they all rely on some set of adjustable capacitors and inductors. The operator keys the transmitter and adjusts the knobs looking for a dip in the SWR reading. Once you know the settings for a particular frequency, you can probably just dial it back in later, but if you change frequency by too much or your antenna changes, you may have to retune.

It is polite to turn down the power as much as possible, but to make the measurements, you have to send some signal out the antenna. Or do you?

Several methods have been used in the past to adjust antennas, ranging from grid dip meters to antenna analyzers. Of course, these instruments also send a signal to the antenna, but usually, they are tiny signals, unlike the main transmitter, which may have trouble going below a watt or even five watts.

New Gear

However, a recent piece of gear can make this task almost trivial: the vector network analyzer (VNA). Ok, so the VNA isn’t really that new, but until recently, they were quite expensive and unusual. Now, you can pick one up for nearly nothing in the form of the NanoVNA.

The VNA is, of course, a little transmitter that typically has a wide range coupled with a power detector. The transmitter can sweep a band, and the device can determine how much power goes forward and backward into the device under test. That allows it to calculate the SWR easily, among other parameters.

Continue reading “Silent Antenna Tuning”