Apple Newton Gets Rebuilt Battery Pack

We all carry touch screen computers around in our pockets these days, but before the smartphone revolution, there was the personal digital assistant (PDA). While it wasn’t a commercial success, one of the first devices in this category was the Apple Newton. Today they’re sought after by collectors, although most of the ones surviving to this day need a bit of rework to the battery pack. Luckily, as [Robert’s Retro] shows, it’s possible to rebuild the pack with modern cells.

By modern standards, the most surprising thing about these battery packs is both that they’re removable and that they’re a standard size, matching that of AA batteries. The Newton battery pack uses four cells, so replacing them with modern rechargeable AA batteries should be pretty straightforward, provided they can be accessed. This isn’t as easy, though. In true Apple fashion the case is glued shut, and prying it apart can damage it badly enough so it won’t fit back in the tablet after repair is complete. The current solution is to cut a hatch into the top instead and then slowly work on replacing the cells while being careful to preserve the electronics inside.

[Robert’s Retro] also demonstrates how to spot weld these new AA batteries together to prepare them for their new home in the Newton case. With the two rows fastened together with nickel strips they can be quickly attached to the existing electrical leads in the battery pack, and from there it’s just a matter of snapping the batteries into the case and sliding it back into the tablet. If you’re looking for something a bit more modern, though, we’d recommend this Apple tablet-laptop combo, but it’s not particularly easy on the wallet.

Continue reading “Apple Newton Gets Rebuilt Battery Pack”

Debugging The UE1 Paper Tape Reader And Amplification Circuit

The tape reader and amplifiers mounted with the other UE1 modules. (Credit: David Lovett, YouTube)

After recently putting together the paper tape reader for his custom tube-based UE1 computer, [David Lovett] did get squiggles on the outputs, but not quite the right ones. In the most recent video, these issues are addressed one by one, so that this part of the UE1 1-bit computer can be called ‘done’. Starting off the list of issues were the odd readings from the photodiodes, which turned out to be due to the diodes being misaligned and a dodgy solder joint. This allowed [David] to move on to building the (obviously 6AU6 tube-based) amplifier for the photodiode output signals.

Much like the Bendix G-15’s tape reader which served as inspiration, this also meant adding potentiometers to adjust the gain. For the clock signal on the tape, a clock recovery PCB was needed, which should provide the UE1 computer system with both the clocks and the input data.

Using the potentiometers on the amplification board, the output signals can be adjusted at will to give the cleanest possible signal to the rest of the system, which theoretically means that as soon as [David] adds the permanent wiring and a few utility boards to allow the code to manipulate the tape reader (e.g. halt) as well as manual inputs. The UE1 computer system is thus being pretty close to running off tape by itself for the first time and with it being ‘complete’.

Continue reading “Debugging The UE1 Paper Tape Reader And Amplification Circuit”

Microchess Remembered

Playing chess has always been a bellwether for computers. The game isn’t trivial, but the rules are managably simple. However, the game is too complex to be easily solved entirely, so you have to use tricky software to play a credible game. Big computers do have an advantage, of course. But Microchess — arguably the first commercial game for home computers — was able to play on tiny machines like the Kim-1. [Joachim Froholt] interviewed [Peter Jennings] — the man behind Microchess to learn the whole story of its creation.

In 1960, [Jennings] was ten years old and had to persuade the local librarian to let him read adult books on electronics and computers. Five years later, a ham radio teletype and some circuitry helped him practice chess openings and was the first of many chess-playing machines he’d build or program.

Microchess itself took six months of painstaking programming, entering hex codes into the computer. Word leaked out from a user’s group meeting (where Microchess beat a human player), and [Jennings] was swamped with requests for the program. In late 1976, the program was offered for sale as a teletype listing or, for an extra $3, a cassette tape.

The program went on to be very successful and moved to other platforms. Commodore even made a special dedicated device based on the Kim-1 to play Microchess, a piece of hardware unique enough that [Michael Gardi] honored it with one of his phenomenal replicas.

Retro Computer Goes Back To The 1950s

When thinking of retrocomputing, many of us will imagine machines such as the Commodore 64 or Apple II. These computers were very popular and have plenty of parts and documentation available. Fewer will go back to the Intel 8008 or even 4004 era which were the first integrated circuit chips commercially available. But before even those transistor-based computers is a retrocomputing era rarely touched on: the era of programmable vacuum tube machines. [Mike] has gone back to the 1950s with this computer which uses vacuum tubes instead of transistors.

The computer has an eight-bit architecture and features most of the components of any modern transistor-based computer of similar computational ability. Memory, I/O, an arithmetic logic unit including a carry bit that allows it to do 16-bit arithmetic, are all implemented using 6N3P dual triode tubes that date to the 50s and 60s and would have been used in similar computers like the IBM 700. All of this drives a flight simulator program or a Fibonacci number generator, demonstrating its general purpose computing capabilities.

Of course, tubes were generally phased out in favor of transistors largely due to their power and space requirements; [Mike] needs a stepladder to maintain this computer as well as around ten minutes each time he starts it up to allow the tubes to warm up, with each module needing over three amps of current each. It’s a hugely impressive build and we’d recommend checking out the video linked below to get more details on its operation. If you’re looking for something a little more accessible to get into the world of vacuum tubes, this single-board tube computer fits the bill.

Continue reading “Retro Computer Goes Back To The 1950s”

Ampere WS-1: The Other APL Portable Computer

When thinking of home computers and their portable kin it’s easy to assume that all of them provided BASIC as their interpreter, but for a while APL also played a role. The most quaint APL portable system here might be the Ampere WS-1, called the BIG.APL. Released in Japan in November of 1985, it was a very modern Motorola M68000-based portable with fascinating styling and many expansion options. Yet amidst an onslaught of BASIC-based microcomputers and IBM’s slow retreat out of the APL-based luggables market with its IBM 5110, an APL-only portable in 1985 was a daring choice.

Rather than offering both APL and BASIC as IBM’s offerings had, the WS-1 offered only APL, with a custom operating system (called Big.DOS) which also provided a limited a form of multi-tasking involving a back- and foreground task. Running off rechargeable NiCd batteries it could power the system for eight hours, including the 25 x 80 character LCD screen and the built-in microcassette storage.

Although never released in the US, it was sold in Japan, Australia and the UK, as can be seen from the advertisements on the above linked Computer Ads from the Past article. Clearly the WS-1 never made that much of a splash, but its manufacturer seems to be still around today, which implies that it wasn’t a total bust. You also got to admit that the design is very unique, which is one of the reasons why this system has become a collector’s item today.

KiCad render of µLind pcb

The 6809 8-Bit Microcomputer: A Father-Son Odyssey

If you’re nostalgic for the golden age of microprocessors and dream of building your own computer, this story might spark your imagination. [Eric Lind], passionate retro enthusiast and his 14-year-old son, embarked on a mission to craft a microcomputer from scratch, centred around the exotic Motorola 6809 chip: the µLind.

What sets this project apart is its ambition: bridging retro computing with modern enhancements. Starting with just a 6809 and some basic peripherals, the men designed a multi-stage roadmap to realize their dream. Each stage brought new challenges: debugging an address decoder, reworking memory management, and evolving glue logic into programmable GAL chips. Fascinatingly, the project isn’t just about nostalgia—it’s a playground for exploring multitasking operating systems and pushing the boundaries of 8-bit computing.

Their creativity shines in solutions like a C64-compatible joystick port, add-on expansion cards, and a memory overkill of 1MB RAM. With every setback—a missing pull-up resistor or a misrouted IRQ signal—their determination grew stronger. By combining old-school know-how with modern tools like KiCad, they’ve created something that is both personal and profoundly inspiring.

[Eric]’s hope and goal is to establish a community of people that want to expand beyond the traditional Z80 and 6502 based SBC’s. Interested? Read [Eric]’s project log on Hackaday.io and start crafting!

How Corroded Can A Motherboard Be?

We will admit it. If we found a 386 motherboard as badly corroded as the one [Bits und Bolts] did, we would trash it—not him, though. In fact, we were surprised when he showed it and said he had already removed most of it in vinegar. You can check the board out in the video below.

There was still a lot of work to do on both the front and back of the board. The motherboard was a Biostar and while it isn’t as dense as a modern board, it still had plenty of surface mount parts jammed in.

Continue reading “How Corroded Can A Motherboard Be?”