There’s A Venusian Spacecraft Coming Our Way

It’s not unusual for redundant satellites, rocket stages, or other spacecraft to re-enter the earth’s atmosphere. Usually they pass unnoticed or generate a spectacular light show, and very rarely a few pieces make it to the surface of the planet. Coming up though is something entirely different, a re-entry of a redundant craft in which the object in question might make it to the ground intact. To find out more about the story we have to travel back to the early 1970s, and Kosmos-482. It was a failed Soviet Venera mission, and since its lander was heavily over-engineered to survive entry into the Venusian atmosphere there’s a fascinating prospect that it might survive Earth re-entry.

A model of the Venera 7 probe, launched in 1970.
This model of the earlier Venera 7 probe shows the heavy protection to survive entry into the Venusian atmosphere. Emerezhko, CC BY-SA 4.0.

At the time of writing the re-entry is expected to happen on the 10th of May, but as yet due to its shallow re-entry angle it is difficult to predict where it might land. It is thought to be about a metre across and to weigh just under 500 kilograms, and its speed upon landing is projected to be between 60 and 80 metres per second. Should it hit land rather than water then, its remains are thought to present an immediate hazard only in its direct path.

Were it to be recovered it would be a fascinating artifact of the Space Race, and once the inevitable question of its ownership was resolved — do marine salvage laws apply in space? –we’d expect it to become a world class museum exhibit. If that happens, we look forward to bringing you our report if possible.

This craft isn’t the only surviving relic of the Space Race out there, though it may be the only one we have a chance of seeing up-close. Some of the craft from that era are even still alive.

Header: Moini, CC0.

Life On K2-18b? Don’t Get Your Hopes Up Just Yet

Last week, the mainstream news was filled with headlines about K2-18b — an exoplanet some 124 light-years away from Earth that 98% of the population had never even heard about. Even astronomers weren’t aware of its existence until the Kepler Space Telescope picked it out back in 2015, just one of the more than 2,700 planets the now defunct observatory was able to identify during its storied career. But now, thanks to recent observations by the James Web Space Telescope, this obscure planet has been thrust into the limelight by the discovery of what researchers believe are the telltale signs of life in its atmosphere.

Artist’s rendition of planet K2-18b.

Well, maybe. As you might imagine, being able to determine if a planet has life on it from 124 light-years away isn’t exactly easy. We haven’t even been able to conclusively rule out past, or even present, life in our very own solar system, which in astronomical terms is about as far off as the end of your block.

To be fair the University of Cambridge’s Institute of Astronomy researchers, lead by Nikku Madhusudhan, aren’t claiming to have definitive proof that life exists on K2-18b. We probably won’t get undeniable proof of life on another planet until a rover literally runs over it. Rather, their paper proposes that abundant biological life, potentially some form of marine phytoplankton, is one of the strongest explanations for the concentrations of dimethyl sulfide and dimethyl disulfide that they’ve detected in the atmosphere of K2-18b.

As you might expect, there are already challenges to that conclusion. Which is of course exactly how the scientific process is supposed to work. Though the findings from Cambridge are certainly compelling, adding just a bit of context can show that things aren’t as cut and dried as we might like. There’s even an argument to be made that we wouldn’t necessarily know what the signs of extraterrestrial life would look like even if it was right in front of us.

Continue reading “Life On K2-18b? Don’t Get Your Hopes Up Just Yet”

An array of current or next-generation boosters powered by methalox engines.

How Methane Took Over The Booster World

Go back a generation of development, and excepting the shuttle-derived systems, all liquid rockets used RP-1 (aka kerosene) for their first stage. Now it seems everybody and their dog wants to fuel their rockets with methane. What happened? [Eager Space] was eager to explain in recent video, which you’ll find embedded below.

Space X Starship firing its many Raptor engines.
Space X Starship firing its many Raptor engines. The raptor pioneered the new generation of methalox. (Image: Space X)

At first glance, it’s a bit of a wash: the density and specific impulses of kerolox (kerosene-oxygen) and metholox (methane-oxygen) rockets are very similar. So there’s no immediate performance improvement or volumetric disadvantage, like you would see with hydrogen fuel. Instead it is a series of small factors that all add up to a meaningful design benefit when engineering the whole system.

Methane also has the advantage of being a gas when it warms up, and rocket engines tend to be warm. So the injectors don’t have to worry about atomizing a thick liquid, and mixing fuel and oxidizer inside the engine does tend to be easier. [Eager Space] calls RP-1 “a soup”, while methane’s simpler combustion chemistry makes the simulation of these engines quicker and easier as well.

There are other factors as well, like the fact that methane is much closer in temperature to LOX, and does cost quite a bit less than RP-1, but you’ll need to watch the whole video to see how they all stack up.

We write about rocketry fairly often on Hackaday, seeing projects with both liquid-fueled and solid-fueled engines. We’ve even highlighted at least one methalox rocket, way back in 2019. Our thanks to space-loving reader [Stephen Walters] for the tip. Building a rocket of your own? Let us know about it with the tip line.

Continue reading “How Methane Took Over The Booster World”

Haircuts In Space: How To Keep Your Astronauts Looking Fresh

NASA astronaut Catherine Coleman gives ESA astronaut Paolo Nespoli a haircut in the Kibo laboratory on the ISS in 2011. (Credit: NASA)
NASA astronaut Catherine Coleman gives ESA astronaut Paolo Nespoli a haircut in the Kibo laboratory on the ISS in 2011. (Credit: NASA)

Although we tend to see mostly the glorious and fun parts of hanging out in a space station, the human body will not cease to do its usual things, whether it involves the digestive system, or even something as mundane as the hair that sprouts from our heads. After all, we do not want our astronauts to return to Earth after a half-year stay in the ISS looking as if they got marooned on an uninhabited island. Introducing the onboard barbershop on the ISS, and the engineering behind making sure that after a decade the ISS doesn’t positively look like it got the 1970s shaggy wall carpet treatment.

The basic solution is rather straightforward: an electric hair clipper attached to a vacuum that will whisk the clippings safely into a container rather than being allowed to drift around. In a way this is similar to the vacuums you find on routers and saws in a woodworking shop, just with more keratin rather than cellulose and lignin.

On the Chinese Tiangong space station they use a similar approach, with the video showing how simple the system is, little more than a small handheld vacuum cleaner attached to the clippers. Naturally, you cannot just tape the vacuum cleaner to some clippers and expect it to get most of the clippings, which is where both the ISS and Tiangong solutions seems to have a carefully designed construction to maximize the hair removal. You can see the ISS system in action in this 2019 video from the Canadian Space Agency.

Of course, this system is not perfect, but amidst the kilograms of shed skin particles from the crew, a few small hair clippings can likely be handled by the ISS’ air treatment systems just fine. The goal after all is to not have a massive expanding cloud of hair clippings filling up the space station.

Improving Magnetoplasmadynamic Ion Thrusters With Superconductors

Ion thrusters are an amazing spacecraft propulsion technology, providing very high efficiency with relatively little fuel. Yet getting one to produce more thrust than that required to lift a sheet of A4 paper requires a lot of electricity. This is why they have been only used for applications where sustained thrust and extremely low fuel usage are important, such as the attitude management of satellites and other spacecraft. Now researchers in New Zealand have created a prototype magnetoplasmadynamic (MPD) thruster with a superconducting electromagnet that is claimed to reduce the required input power by 99% while generating a three times as strong a magnetic field.

Although MPD thrusters have been researched since the 1970s – much like their electrostatic cousins, Hall-effect thrusters – the power limitations on the average spacecraft have limited mission profiles. Through the use of a high-temperature superconducting electromagnet with an integrated cryocooler, the MPD thruster should be able to generate a very strong field, while only sipping power. Whether this works and is as reliable as hoped will be tested this year when the prototype thruster is installed on the ISS for experiments.

Australia’s Steady March Towards Space

The list of countries to achieve their own successful orbital space launch is a short one, almost as small as the exclusive club of states that possess nuclear weapons. The Soviet Union was first off the rank in 1957, with the United States close behind in 1958, and a gaggle of other aerospace-adept states followed in the 1960s, 1970s, and 1980s. Italy, Iran, North Korea and South Korea have all joined the list since the dawn of the new millennium.

Absent from the list stands Australia. The proud island nation has never stood out as a player in the field of space exploration, despite offering ground station assistance to many missions from other nations over the years. However, the country has continued to inch its way to the top of the atmosphere, establishing its own space agency in 2018. Since then, development has continued apace, and the country’s first orbital launch appears to be just around the corner.

Continue reading “Australia’s Steady March Towards Space”

AMSAT-OSCAR 7: The Ham Satellite That Refused To Die

When the AMSAT-OSCAR 7 (AO-7) amateur radio satellite was launched in 1974, its expected lifespan was about five years. The plucky little satellite made it to 1981 when a battery failure caused it to be written off as dead. Then, in 2002 it came back to life. The prevailing theory being that one of the cells in the satellites NiCd battery pack, in an extremely rare event, failed open — thus allowing the satellite to run (intermittently) off its solar panels.

In a recent video by [Ben] on the AE4JC Amateur Radio YouTube channel goes over the construction of AO-7, its operation, death and subsequent revival are covered, as well as a recent QSO (direct contact).

The battery is made up of multiple individual cells.

The solar panels covering this satellite provided a grand total of 14 watts at maximum illumination, which later dropped to 10 watts, making for a pretty small power budget. The entire satellite was assembled in a ‘clean room’ consisting of a sectioned off part of a basement, with components produced by enthusiasts associated with AMSAT around the world. Onboard are two radio transponders: Mode A at 2 meters and Mode B at 10 meters, as well as four beacons, three of which are active due to an international treaty affecting the 13 cm beacon.

Positioned in a geocentric LEO (1,447 – 1,465 km) orbit, it’s quite amazing that after 50 years it’s still mostly operational. Most of this is due to how the satellite smartly uses the Earth’s magnetic field for alignment with magnets as well as the impact of photons to maintain its spin. This passive control combined with the relatively high altitude should allow AO-7 to function pretty much indefinitely while the PV panels keep producing enough power. All because a NiCd battery failed in a very unusual way.

Continue reading “AMSAT-OSCAR 7: The Ham Satellite That Refused To Die”