Exploring The Sounds And Sights Of Alien Worlds

The 20th century saw humankind’s first careful steps outside of the biosphere in which our species has evolved. Whereas before humans had experienced the bitter cold of high altitudes, the crushing pressures in Earth’s oceans, as well as the various soundscapes and vistas offered in Earth’s biosphere, beyond Earth’s atmosphere we encountered something completely new. Departing Earth’s gravitational embrace, the first humans who ventured into space could see the glowing biosphere superimposed against the seemingly black void of space, in which stars, planets and more would only appear when blending out the intense light from the Earth and its life-giving Sun.

Years later, the first humans to set foot on the Moon experienced again something unlike anything anyone has experienced since. Walking around on the lunar regolith in almost complete vacuum and with very low gravity compared to Earth, it was both strangely familiar and hauntingly alien. Although humans haven’t set foot on Mars yet, we have done the next best thing, with a range of robotic explorers with cameras and microphones to record the experience for us here back on Earth.

Unlike the Moon, Mars has a thin but very real atmosphere which permits the travel of soundwaves, so what does the planet sound like? Despite what fictional stories like Weir’s The Martian like to claim, reality is in fact stranger than fiction, with for example a 2024 research article by Martin Gillier et al. as published in JGR Planets finding highly variable acoustics during Mars’ seasons. How much of what we consider to be ‘normal’ is just Earth’s normal?

Continue reading “Exploring The Sounds And Sights Of Alien Worlds”

Life Found On Ryugu Asteroid Sample, But It Looks Very Familiar

Samples taken from the space-returned piece of asteroid Ryugu were collected and prepared under strict anti-contamination controls. Inside the cleanest of clean rooms, a tiny particle was collected from the returned sample with sterilized tools in a nitrogen atmosphere and stored in airtight containers before being embedded in an epoxy block for scanning electron microscopy.

It’s hard to imagine what more one could do, but despite all the precautions taken, the samples were rapidly colonized by terrestrial microorganisms. Only the upper few microns of the sample surface, but it happened. That’s what the images above show.

The surface of Ryugu from Rover 1B’s camera. Source: JAXA

Obtaining a sample from asteroid Ryugu was a triumph. Could this organic matter have come from the asteroid itself? In a word, no. Researchers have concluded the microorganisms are almost certainly terrestrial bacteria that contaminated the sample during collection, despite the precautions taken.

You can read the study to get all the details, but it seems that microorganisms — our world’s greatest colonizers — can circumvent contamination controls. No surprise, in a way. Every corner of our world is absolutely awash in microbial life. Opening samples on Earth comes with challenges.

As for off-Earth, robots may be doing the exploration but despite NASA assembling landers in clean room environments we may have already inadvertently exported terrestrial microbes to the Moon, and Mars. The search for life to which we are not related is one of science and humanity’s greatest quests, but it seems life found on a space-returned samples will end up looking awfully familiar until we step up our game.

Solar Orbiter Takes Amazing Solar Pictures

There’s an old joke that they want to send an exploratory mission to the sun, but to save money, they are going at night. The European Space Agency’s Solar Orbiter has gotten as close as anything we’ve sent to study our star on purpose, and the pictures it took last year were from less than 46 million miles away. That sounds far away, but in space terms, that’s awfully close to the nuclear furnace. The pictures are amazing, and the video below is also worth watching.

Because the craft was so close, each picture it took was just a small part of the sun’s surface. ESA stitched together multiple images to form the final picture, which shows the entire sun as 8,000 pixels across. We’ll save you the math. We figure each pixel is worth about 174 kilometers or 108 miles, more or less.

Continue reading “Solar Orbiter Takes Amazing Solar Pictures”

Student-built rocket launch in Black Rock Desert, Nevada

Aftershock II: How Students Shattered 20-Year Amateur Rocket Records

When it comes to space exploration, we often think of billion-dollar projects—NASA’s Artemis missions, ESA’s Mars rovers, or China’s Tiangong station. Yet, a group of U.S. students at USC’s Rocket Propulsion Lab (RPL) has achieved something truly extraordinary—a reminder that groundbreaking work doesn’t always require government budgets. On October 20, their homemade rocket, Aftershock II, soared to an altitude of 470,000 feet, smashing the amateur spaceflight altitude and speed records held for over two decades. Intrigued? Check out the full article here.

The 14-foot, 330-pound rocket broke the sound barrier within two seconds, reaching hypersonic speeds of Mach 5.5—around 3,600 mph. But Aftershock II didn’t just go fast; it climbed higher than any amateur spacecraft ever before, surpassing the 2004 GoFast rocket’s record by 90,000 feet. Even NASA-level challenges like thermal protection at hypersonic speeds were tackled using clever tricks. Titanium-coated fins, specially engineered heat-resistant paint, and a custom telemetry module ensured the rocket not only flew but returned largely intact.

This achievement feels straight out of a Commander Keen adventure—scrappy explorers, daring designs, and groundbreaking success against all odds. The full story is a must-read for anyone dreaming of building their own rocket.

Continue reading “Aftershock II: How Students Shattered 20-Year Amateur Rocket Records”

Measuring The Mighty Roar Of SpaceX’s Starship Rocket

SpaceX’s Starship is the most powerful launch system ever built, dwarfing even the mighty Saturn V both in terms of mass and total thrust. The scale of the vehicle is such that concerns have been raised about the impact each launch of the megarocket may have on the local environment. Which is why a team from Brigham Young University measured the sound produced during Starship’s fifth test flight and compared it to other launch vehicles.

Published in JASA Express Letters, the paper explains the team’s methodology for measuring the sound of a Starship launch at distances ranging from 10 to 35 kilometers (6 to 22 miles). Interestingly, measurements were also made of the Super Heavy booster as it returned to the launch pad and was ultimately caught — which included several sonic booms as well as the sound of the engines during the landing maneuver.

Continue reading “Measuring The Mighty Roar Of SpaceX’s Starship Rocket”

NASA Announces New Trials For In-Space Laser Welding

In-space manufacturing is a big challenge, even with many of the same manufacturing methods being available as on the ground. These methods include rivets, bolts, but also welding, the latter of which was first attempted fifty years ago by Soviet cosmonauts. In-space welding is the subject of a recently announced NASA collaboration. The main aspects to investigate are the effects of reduced gravity and varying amounts of atmosphere on welds.

The Soviets took the lead in space welding when they first performed the feat during the Soyuz-6 mission in 1969. NASA conducted their own welding experiments aboard Skylab in 1973, and in 1984, the first (and last) welds were made in open space during an EVA on the Salyut-7 mission. This time around, NASA wants to investigate fiber laser-based welding, as laid out in these presentation slides. The first set of tests during parabolic flight maneuvers were performed in August of 2024 already, with further testing in space to follow.

Back in 1996 NASA collaborated with the E.O. Paton Welding Institute in Kyiv, Ukraine, on in-space welding as part of the ISWE project which would have been tested on the Mir space station, but manifesting issues ended up killing this project. Most recently ESA has tested in-space welding using the same electron-beam welding (EBW) approach used by the 1969 Soyuz-6 experiment. Electron beam welding has the advantage of providing great control over the weld in a high-vacuum environment such as found in space.

So why use laser beam welding (LBW) rather than EBW? EBW obviously doesn’t work too well when there is some level of atmosphere, is more limited with materials and has as only major advantage that it uses less power than LBW. As these LBW trials move to space, they may offer new ways to create structure and habitats not only in space, but also on the lunar and Martian surface.


Featured image: comparing laser beam welding with electron beam welding in space. (Source: E. Choi et al., OSU, NASA)

Photo manipulation of Skynet-1A hovering a planet

Britain’s Oldest Satellite On The Move: A Space Curiosity

Space and mystery always spark our curiosity, so when we stumbled upon the story of Skynet-1A, Britain’s first communication satellite from 1969, we knew it was worth exploring. The BBC recently highlighted its unexpected movement across the sky – you can check out their full coverage here. The idea that this half-century-old hunk of metal mysteriously shifted orbits leaves us with more questions than answers. Who moved Skynet-1A, and why?

Launched just months after the Apollo 11 Moon landing, Skynet-1A stood as a symbol of Cold War innovation, initially placed above East Africa to support British military communications. But unlike the silent drift of inactive satellites heading naturally eastward, Skynet-1A defied orbital norms, popping up halfway across the globe above the Americas. This wasn’t mere chance; someone or something had made it fire its thrusters, likely in the mid-1970s.

Experts like Dr. Stuart Eves and UCL’s Rachel Hill suggest the possibility of control being temporarily transferred to the US, particularly during maintenance periods at the UK’s RAF Oakhanger. Still, the specifics remain buried in lost records and decades-old international collaborations. Skynet-1A’s journey serves as a stark reminder of the persistent challenges in space and the gaps in our historical data.

Looking for more space oddities? Hackaday has some interesting articles on space debris. You can read the original BBC article here.